2,130 research outputs found

    Hadron Spectroscopy with COMPASS at CERN

    Full text link
    The aim of the COMPASS hadron programme is to study the light-quark hadron spectrum, and in particular, to search for evidence of hybrids and glueballs. COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage spectrometer with high momentum resolution, large acceptance, particle identification and calorimetry. A short pilot run in 2004 resulted in the observation of a spin-exotic state with JPC=1+J^{PC} = 1^{-+} consistent with the debated π1(1600)\pi1(1600). In addition, Coulomb production at low momentum transfer data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a world leading data set was collected with hadron beam which is currently being analysed. The large statistics allows for a thorough decomposition of the data into partial waves. The COMPASS hadron data span over a broad range of channels and shed light on several different aspects of QCD.Comment: 4 pages, 5 figure

    Observation of Buried Phosphorus Dopants near Clean Si(100)-(2x1) with Scanning Tunneling Microscopy

    Full text link
    We have used scanning tunneling microscopy to identify individual phosphorus dopant atoms near the clean silicon (100)-(2x1) reconstructed surface. The charge-induced band bending signature associated with the dopants shows up as an enhancement in both filled and empty states and is consistent with the appearance of n-type dopants on compound semiconductor surfaces and passivated Si(100)-(2x1). We observe dopants at different depths and see a strong dependence of the signature on the magnitude of the sample voltage. Our results suggest that, on this clean surface, the antibonding surface state band acts as an extension of the bulk conduction band into the gap. The positively charged dimer vacancies that have been observed previously appear as depressions in the filled states, as opposed to enhancements, because they disrupt these surface bands.Comment: 4 pages, 3 figures. TeX for OSX from Wierde

    Baseball Card Pricing Model: A Demonstration with Well-known Players

    Get PDF
    A simple hedonic pricing model is developed for baseball cards, of the type often used successfully to model prices for artworks. The model is estimated for a dataset of twelve well-known players observed at eight points in time over a span of twenty years. Dummy variables are used to capture various relevant characteristics of the player or card. This model was estimated separately for two different approaches or assumptions about rates of return. Estimates perform extremely well, explaining most differences among baseball card prices for the cards in the sample. Among extrinsic variables that represent specific players and card characteristics that differentiate cards issued during the same season, race had a significant positive effect on price for black players. Batting average and number of World Series appearances had significant positive impacts on price, but surprisingly, rookie cards tended to be worth relatively less than non-rookie cards. Similarly unexpected findings with respect to players\u27 death and elevation to the Hall of Fame may result from trying to estimate too many characteristics simultaneously on a limited dataset. Results suggest famous players\u27 cards generally are extremely attractive investment instruments

    Theory of Umklapp-assisted recombination of bound excitons in Si:P

    Full text link
    We present the calculations for the oscillator strength of the recombination of excitons bound to phosphorous donors in silicon. We show that the direct recombination of the bound exciton cannot account for the experimentally measured oscillator strength of the no-phonon line. Instead, the recombination process is assisted by an umklapp process of the donor electron state. We make use of the empirical pseudopotential method to evaluate the Umklapp-assisted recombination matrix element in second-order perturbation theory. Our result is in excellent agreement with the experiment. We also present two methods to improve the optical resolution of the optical detection of the spin state of a single nucleus in silicon.Comment: 9 pages, 6 EPS figures, Revtex

    A Search for Dark Matter Annihilation with the Whipple 10m Telescope

    Get PDF
    We present observations of the dwarf galaxies Draco and Ursa Minor, the local group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs) which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis which produced upper limits on excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, , are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain predictions from the currently favored theoretical models of supersymmetry (SUSY), future observations with VERITAS will probe a larger region of the WIMP parameter phase space, and WIMP particle mass (m_\chi).Comment: 33 pages, 12 figures, accepted for publication in the Astrophysical Journa

    Multiwavelength Observations of Markarian 421 in March 2001: an Unprecedented View on the X-ray/TeV Correlated Variability

    Get PDF
    (Abridged) We present a detailed analysis of week-long simultaneous observations of the blazar Mrk421 at 2-60 keV X-rays (RXTE) and TeV gamma-rays (Whipple and HEGRA) in 2001. The unprecedented quality of this dataset enables us to establish firmly the existence of the correlation between the TeV and X-ray luminosities, and to start unveiling some of its more detailed characteristics, in particular its energy dependence, and time variability. The source shows strong, highly correlated variations in X-ray and gamma-ray. No evidence of X-ray/gamma-ray interband lag is found on the full week dataset (<3 ks). However, a detailed analysis of the March 19 flare reveals that data are not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band being simultaneous. We estimate a 2.1+/-0.7 ks TeV lag. The amplitudes of the X-ray and gamma-ray variations are also highly correlated, and the TeV luminosity increases more than linearly w.r.t. the X-ray one. The strong correlation supports the standard model in which a unique electrons population produces the X-rays by synchrotron radiation and the gamma-ray component by inverse Compton scattering. However, for the individual best observed flares the gamma-ray flux scales approximately quadratically w.r.t. the X-ray flux, posing a serious challenge to emission models for TeV blazars. Rather special conditions and/or fine tuning of the temporal evolution of the physical parameters of the emission region are required in order to reproduce the quadratic correlation.Comment: Correction to authorship. Minor editorial changes to text, figures, references. 22 pages (emulateapj), 12 figures (47 postscript files) Published in ApJ, 2008 April 20 (ADS: 2008ApJ...677..906F
    corecore