121 research outputs found
The Operationalization of Task Goal Difficulty: An Exploration of Qualitative and Quantitative Methods
This study contributed to an understanding of the goal setting process by investigating a variety of ways to evaluate the difficulty of short-term goals, including requested quantitative goals, different methods to rate the difficulty of self-defined goals, and the difficulty perceptions of the goal-setters themselves. To examine the validity of different goal-difficulty assessment strategies, I collected short-term academic goals from 116 freshman college students at the beginning of their first semester in college. I also collected antecedents of goal difficulty, such as prior performance and self-efficacy, and collected academic achievement at the conclusion of that semester. The validity of eight different measures of goal difficulty was examined through the examination of goal-difficulty measures with antecedents and academic performance. Correlations among goal-difficulty measures ranged from weak to strong. Patterns of correlations should encourage the future use of both quantitative goal measures and ratings of self-reported goals. Criterion GPA correlated most strongly with the GPA based assessments of goal difficulty. Goal-settersβ perceived difficulty of goals was not associated with predictors and criteria as goal-theory suggested. Applications, future research directions, and study limitations were discussed
Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system
The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing
Research on Inner Surface of Tubes Hydroformed
In this paper is presented a reserch regarding the surfece of hydroforming tubs, made by aluminium and cooper. Hydroforming tubes is very important production method considering that metal tubes are widely used in a great variety of engineering products, such as automobile, aircraft, air conditioner, air compressor, exhaust systems, fluid lines. The results show that the surface of tubes it is influence of the hydroforming process. Also it is very important the material of the tube in research of surface
Polyfunctional Imidazoles: VIII.* 1-Aryl-4-chloro- 5-[R-sulfanyl(R-sulfonyl)methyl]-1H-imidazoles
Alkylation of (1-aryl-4-chloro-1H-imidazol-5-yl)methanethiols with alkyl halides, propargyl bromide, or chloroacetic acid gave 1-aryl-5-(R-sulfanylmethyl)-4-chloro-1H-imidazoles. 1-Aryl-4-chloro-5-(methylsulfanylmethyl)-1H-imidazoles and [(1-aryl-4-chloro-1H-imidazol-5-yl)methylsulfanyl]acetic acids were oxidized to the corresponding sulfones with potassium permanganate.ΠΠ°ΡΠ΅Π΄ΡΠ° ΡΠ°ΡΠΌΠ°ΡΡ
Artificial Neural Networks Model for Springback Prediction in the Bending Operations
The aim of this paper is to develop an Artificial Neural Network (ANN) model for springback prediction in the free cylindrical bending of metallic sheets. The proposed ANN model was developed and tested using the Matlab software. The input parameters of the proposed ANN model were the sheet thickness, punch radius, and coefficient of friction. The resulting data is represented by the springback coefficient. Preparation, assessing and confirmation of the model were achieved using 126 data series obtained by Finite element analysis (FEA). ANN was trained by Levenberg - Marquardt back - propagation algorithm. The performance of the ANN model was evaluated using statistic measurements. The predictions of the ANN model, regarding FEA, had quite low root mean squared error (RMSE) values and the model performed well with the coefficient of determination values. This shows that the developed ANN model leads to the idea of being used as an instrument for springback prediction
Virtual Prototyping : first practice of a European research group
Lien vers la version Γ©diteur: http://www.inderscience.com/books/index.php?action=record&rec_id=696&chapNum=5&journalID=1021&year=2009International audienceThe EMIRAcle association has been created as a European association in order to refer as a pool of European experts with respect to design and manufacturing scientific research. A group of EMIRAcle partners have been working on "Virtual Prototyping (VP)" competencies. The long terms main objectives were: To set a common understanding concerning virtual prototyping To gather competencies in Virtual Prototyping including maturityregarding new concepts and software demonstrators To provide to academics or industries methods, models and software tosupport Virtual Prototyping The paper aims at presenting first results of that research group concerning the creation of a VP knowledge map (second objective). Those results are based on a design case study led by several partners of the EMIRAcle association
2-Π°ΠΌΡΠ½ΠΎ-5-(4-Ρ Π»ΠΎΡΠΎ-1Π½-ΡΠΌΡΠ΄Π°Π·ΠΎΠ»-5-ΡΠ»)-1,3,4-ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΠΈ: ΡΠΈΠ½ΡΠ΅Π·, ΠΏΡΡΠΈΠΌΡΠ΄ΠΎΠ°Π½Π΅Π»ΡΠ²Π°Π½Π½Ρ ΡΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ
This investigation is devoted to the synthesis of new representatives of 2-amino-5-imidazolil-1,3,4-thiadiazole systems, the study of some chemical transformations and the bactericidal activity. It has been shown that thiosemicarbazones obtained by condensation of 4-chloro-1H-5-formylimidazoles with thiosemicarbazide when heated with a triple surplus of iron (III) chloride hexahydrate in 80% acetate acid undergo oxidative cyclization with formation of new 2-amino-5-(4-chloroimidazole-5-yl)-1,3,4-thiadiazoles. The compounds synthesized are heterocyclic systems with two electrophilic centres that are widely used when obtaining biheterocyclic biologically active systems. While studying the chemical behaviour of 2-amino-1,3,4-thiadiazoles under research in reactions of annulation with series of bielectrophilic reagents it has been found that they do not react either with phenacylbromide or malononitrile, and with chloroacetylchloride the product of 5-aminoacylation is formed; it even when heated in the boiling DMF in the presence of K2CO3 is not prone to intramolecular cyclocondensation. At the same time heating of 2-amino-1,3,4-thiadiazoles with diethyl ether of acetylenedicarboxylic acid in the absolute boiling ethanol leads to formation of ethyl-7-oxo-[1,3,4]-thiadiazolo-[3,2-a]-pyrimidine-5-carboxylates. The results of studying the antibacterial properties of 2-amino-1,3,4-thiadiazoles have shown that the compounds synthesized possess a moderate bactericidal and fungicidal activity.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ²ΡΡΠ΅Π½ΠΎ ΡΠΈΠ½ΡΠ΅Π·Ρ Π½ΠΎΠ²ΡΡ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ 2-Π°ΠΌΠΈΠ½ΠΎ-5-ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΈΠ»-1,3,4-ΡΠΈΠ°Π΄ΠΈΠ°Π·ΠΎΠ»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΈΡ
Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΠΉ ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΈΠΎΡΠ΅ΠΌΠΈΠΊΠ°ΡΠ±Π°Π·ΠΎΠ½Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠ΅ΠΉ 4-Ρ
Π»ΠΎΡ-1Π-5-ΡΠΎΡΠΌΠΈΠ»ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ² Ρ ΡΠΈΠΎΡΠ΅ΠΌΠΈΠΊΠ°ΡΠ±Π°Π·ΠΈΠ΄ΠΎΠΌ, ΠΏΡΠΈ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠΈ Ρ 3-ΠΊΡΠ°ΡΠ½ΡΠΌ ΠΈΠ·Π±ΡΡΠΊΠΎΠΌ Π³Π΅ΠΊΡΠ°Π³ΠΈΠ΄ΡΠ°ΡΠ° Ρ
Π»ΠΎΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π° (III) Π² 80%-Π½ΠΎΠΉ ΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠ΅ ΠΏΠΎΠ΄Π΄Π°ΡΡΡΡ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΠΊΠ»ΠΈΠ·Π°ΡΠΈΠΈ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½ΠΎΠ²ΡΡ
2-Π°ΠΌΠΈΠ½ΠΎ-5-(4-Ρ
Π»ΠΎΡΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»-5-ΠΈΠ»)-1,3,4-ΡΠΈΠ°Π΄ΠΈΠ°Π·ΠΎΠ»ΠΎΠ². Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌ Ρ Π΄Π²ΡΠΌΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ»ΡΠ½ΡΠΌΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠΈ Π±ΠΈΠ³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ. ΠΡΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
2-Π°ΠΌΠΈΠ½ΠΎ-1,3,4-ΡΠΈΠ°Π΄ΠΈΠ°Π·ΠΎΠ»ΠΎΠ² Π² ΡΠ΅Π°ΠΊΡΠΈΡΡ
Π°Π½Π½Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΡΡΠ΄ΠΎΠΌ Π±ΠΈΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ»ΡΠ½ΡΡ
ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ² ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΠΎΠ½ΠΈ Π½Π΅ ΡΠ΅Π°Π³ΠΈΡΡΡΡ Π½ΠΈ Ρ ΡΠ΅Π½Π°ΡΠΈΠ»Π±ΡΠΎΠΌΠΈΠ΄ΠΎΠΌ, Π½ΠΈ Ρ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ½ΠΈΡΡΠΈΠ»ΠΎΠΌ, Π° Ρ Ρ
Π»ΠΎΡΠ°ΡΠ΅ΡΠΈΠ»Ρ
Π»ΠΎΡΠΈΠ΄ΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡ 5-Π°ΠΌΠΈΠ½ΠΎΠ°ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠΈ Π² ΠΊΠΈΠΏΡΡΠ΅ΠΌ ΠΠΠ€Π Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ K2CO3 Π½Π΅ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°Π΅ΡΡΡ Π²Π½ΡΡΡΠΈΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠ΅ 2-Π°ΠΌΠΈΠ½ΠΎ-1,3,4-ΡΠΈΠ°Π΄ΠΈΠ°Π·ΠΎΠ»ΠΎΠ² Ρ Π΄ΠΈΡΡΠΈΠ»ΠΎΠ²ΡΠΌ ΡΡΠΈΡΠΎΠΌ Π°ΡΠ΅ΡΠΈΠ»Π΅Π½Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Π² Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΌ ΠΊΠΈΠΏΡΡΠ΅ΠΌ ΡΡΠ°Π½ΠΎΠ»Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΈΠ» 7-ΠΎΠΊΡΠΎ-[1,3,4]ΡΠΈΠ°Π΄ΠΈΠ°Π·ΠΎΠ»[3,2-Π°]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² 2-Π°ΠΌΠΈΠ½ΠΎ-1,3,4-ΡΠΈΠ°Π΄ΠΈΠ°Π·ΠΎΠ»ΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠΉ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π½ΠΎΠΉ ΠΈ ΡΡΠ½Π³ΠΈΡΠΈΠ΄Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ.ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠΈΡΠ²ΡΡΠ΅Π½Π΅ ΡΠΈΠ½ΡΠ΅Π·Ρ Π½ΠΎΠ²ΠΈΡ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π½ΠΈΠΊΡΠ² 2-Π°ΠΌΡΠ½ΠΎ-5-ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ»-1,3,4-ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΡΠ½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ, Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π΄Π΅ΡΠΊΠΈΡ
ΡΡ
Ρ
ΡΠΌΡΡΠ½ΠΈΡ
ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Ρ ΡΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΠΎ ΡΡΠΎΡΠ΅ΠΌΡΠΊΠ°ΡΠ±Π°Π·ΠΎΠ½ΠΈ, ΠΎΡΡΠΈΠΌΠ°Π½Ρ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡΡ 4-Ρ
Π»ΠΎΡΠΎ-1Π-5-ΡΠΎΡΠΌΡΠ»ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ² ΡΠ· ΡΡΠΎΡΠ΅ΠΌΡΠΊΠ°ΡΠ±Π°Π·ΠΈΠ΄ΠΎΠΌ, ΠΏΡΠΈ Π½Π°Π³ΡΡΠ²Π°Π½Π½Ρ Π· 3-ΠΊΡΠ°ΡΠ½ΠΈΠΌ Π½Π°Π΄Π»ΠΈΡΠΊΠΎΠΌ Π³Π΅ΠΊΡΠ°Π³ΡΠ΄ΡΠ°ΡΡ Ρ
Π»ΠΎΡΠΈΠ΄Ρ Π·Π°Π»ΡΠ·Π°(ΠΠΠ) Ρ 80%-Π½ΡΠΉ ΠΎΡΡΠΎΠ²ΡΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Π·Π°Π·Π½Π°ΡΡΡ ΠΎΠΊΠΈΡΠ½ΡΠ²Π°Π»ΡΠ½ΠΎΡ ΡΠΈΠΊΠ»ΡΠ·Π°ΡΡΡ Π· ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌ Π½ΠΎΠ²ΠΈΡ
2-Π°ΠΌΡΠ½ΠΎ-5-(4-Ρ
Π»ΠΎΡΠΎΡΠΌΡΠ΄Π°Π·ΠΎΠ»-5-ΡΠ»)-1,3,4-ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΡΠ². Π‘ΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π²ΡΠ΄Π½ΠΎΡΡΡΡΡΡ Π΄ΠΎ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π· Π΄Π²ΠΎΠΌΠ° Π΅Π»Π΅ΠΊΡΡΠΎΡΡΠ»ΡΠ½ΠΈΠΌΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ, ΡΠΎ ΡΠ°ΡΡΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡΡΡ ΠΏΡΠΈ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ Π±ΡΠ³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΡ
Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ. ΠΡΠΈ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Ρ
ΡΠΌΡΡΠ½ΠΎΡ ΠΏΠΎΠ²Π΅Π΄ΡΠ½ΠΊΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
2-Π°ΠΌΡΠ½ΠΎ-1,3,4-ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΡΠ² Ρ ΡΠ΅Π°ΠΊΡΡΡΡ
Π°Π½Π΅Π»ΡΠ²Π°Π½Π½Ρ Π· Π½ΠΈΠ·ΠΊΠΎΡ Π±ΡΠ΅Π»Π΅ΠΊΡΡΠΎΡΡΠ»ΡΠ½ΠΈΡ
ΡΠ΅Π°Π³Π΅Π½ΡΡΠ² Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΠΎΠ½ΠΈ Π½Π΅ ΡΠ΅Π°Π³ΡΡΡΡ Π½Ρ Π· ΡΠ΅Π½Π°ΡΠΈΠ»Π±ΡΠΎΠΌΡΠ΄ΠΎΠΌ, Π½Ρ Π· ΠΌΠ°Π»ΠΎΠ½ΠΎΠ½ΡΡΡΠΈΠ»ΠΎΠΌ, Π° Π· Ρ
Π»ΠΎΡΠΎΠ°ΡΠ΅ΡΠΈΠ»Ρ
Π»ΠΎΡΠΈΠ΄ΠΎΠΌ ΡΡΠ²ΠΎΡΡΡΡΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡ 5-Π°ΠΌΡΠ½ΠΎΠ°ΡΠΈΠ»ΡΠ²Π°Π½Π½Ρ, ΡΠΊΠΈΠΉ Π½Π°Π²ΡΡΡ ΠΏΡΠΈ Π½Π°Π³ΡΡΠ²Π°Π½Π½Ρ Π² ΠΊΠΈΠΏΠ»ΡΡΠΎΠΌΡ ΠΠΠ€Π Π² ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ K2CO3 Π½Π΅ ΡΡ
ΠΈΠ»ΡΠ½ΠΈΠΉ Π΄ΠΎ Π²Π½ΡΡΡΡΡΠ½ΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΡ ΡΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ. Π ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°Ρ Π½Π°Π³ΡΡΠ²Π°Π½Π½Ρ 2-Π°ΠΌΡΠ½ΠΎ-1,3,4-ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΡΠ² Π· Π΄ΡΠ΅ΡΠΈΠ»ΠΎΠ²ΠΈΠΌ Π΅ΡΡΡΠΎΠΌ Π°ΡΠ΅ΡΠΈΠ»Π΅Π½Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Π² Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΌΡ ΠΊΠΈΠΏΠ»ΡΡΠΎΠΌΡ Π΅ΡΠ°Π½ΠΎΠ»Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π΅ΡΠΈΠ» 7-ΠΎΠΊΡΠΎ-[1,3,4]ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΠΎ[3,2-Π°]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ 2-Π°ΠΌΡΠ½ΠΎ-1,3,4-ΡΡΠ°Π΄ΡΠ°Π·ΠΎΠ»ΡΠ² ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΠΎ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π²ΠΈΡΠ²Π»ΡΡΡΡ ΠΏΠΎΠΌΡΡΠ½Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π½Ρ ΡΠ° ΡΡΠ½Π³ΡΡΠΈΠ΄Π½Ρ Π΄ΡΡ
ΠΠ»ΠΊΠ΅Π½ΡΠ»ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΠΈ: ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠ° Ρ ΡΠΌΡΡΠ½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ
The aim of this review was to summarize and systematize literature on chemistry of alkenylsubstituted imidazoles known as important synthetic substrates and precursors for the synthesis of biologically active substances. Two approaches to the synthesis of these compounds are reviewed: 1) the imidazole ring formation based on functionalized alkenyl compounds; 2) functionalization of imidazole derivatives with the alkenyl moiety. The second approach prevails and includes condensation of methylimidazoles with carbonyl compounds, reactions of formylimidazoles with compounds containing activated methylene groups and phosphorus ylides, as well as reactions of dehydration and dehydrohalogenation of substituted imidazoles. The methods of synthesis of alkenylsubstituted imidazoles have been analyzed in detail; their synthetic potential and limits have been described. Special attention is paid to the authorsβ own research on the synthesis of new 4-chloro-5-alkenylsubstituted imidazoles using 5-formylimidazoles as precursors. Analysis of the chemical properties of alkenylsubstituted imidazoles has allowed conducting their strict classification and systematizing their typical transformations. Reactions of cyclocondensation are the first ones to be mentioned, they proceed through the interaction of the alkenyl moiety with another functional group or endocyclic Nitrogen. Other transformations such as heterocyclofunctionalization, oxidation and reduction are based on transformation of the alkenyl moiety. It should be noted that heterocyclization processes are new for chemistry of alkenylimidazoles, they are successfully applied to 5-(2-nitro-alkenyl)- and 5-(2-arylvinyl)substituted derivatives, and due to them it is possible to obtain new promising hybrid structures.Π ΠΎΠ±Π·ΠΎΡΠ½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Ρ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ, ΠΊΠ°ΡΠ°ΡΡΠΈΠ΅ΡΡ Ρ
ΠΈΠΌΠΈΡ Π²ΡΠ΅Ρ
ΡΠΈΠΏΠΎΠ² Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ² ΠΊΠ°ΠΊ Π²Π°ΠΆΠ½ΡΡ
ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ±ΡΡΡΠ°ΡΠΎΠ² ΠΈ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠΎΠ² Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ². ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π΄Π²Π° ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΈΡ
ΡΠΈΠ½ΡΠ΅Π·Ρ : 1) ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΄ΡΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΡΠ½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ; 2) Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»Π°. ΠΡΠΎΡΠΎΠΉ Π²Π°ΡΠΈΠ°Π½Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΎΠΌΠΈΠ½ΠΈΡΡΡΡΠΈΠΌ ΠΈ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΌΠ΅ΡΠΈΠ»ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ² Ρ ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ»ΡΠ½ΡΠΌΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡΠΌΠΈ, ΡΠ΅Π°ΠΊΡΠΈΠΈ ΡΠΎΡΠΌΠΈΠ»ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ² Ρ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ΅Π°Π³Π΅Π½ΡΠ°ΠΌΠΈ ΠΈΠ»ΠΈΠ΄Π°ΠΌΠΈ ΡΠΎΡΡΠΎΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π΄Π΅Π³ΠΈΠ΄ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΈ Π΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ². ΠΠ΅ΡΠ°Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π°Π»ΠΊΠ΅Π½ΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ², ΠΎΡΠ΅ΡΡΠ΅Π½Ρ ΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½ΡΠ΅ Π³ΡΠ°Π½ΠΈΡΡ ΠΈ ΡΠ°ΡΠΊΡΡΡ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π». ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»Π΅Π½ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌ Π°Π²ΡΠΎΡΠΎΠ² ΠΏΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΡΠΈΠΏΠΎΠ² 4-Ρ
Π»ΠΎΡ-5-Π°Π»ΠΊΠ΅Π½ΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
5-ΡΠΎΡΠΌΠΈΠ»ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ². ΠΠ½Π°Π»ΠΈΠ· Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΈΡ
ΡΡΡΠΎΠ³ΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΈΠΏΠΈΡΠ½ΡΠ΅ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. Π Π½ΠΈΠΌ, Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠ½Π΅ΡΡΠΈ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΡΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ΅Π°Π»ΠΈΠ·ΡΡΡΡΡ Ρ ΡΡΠ°ΡΡΠΈΠ΅ΠΌ Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ ΠΈΠ»ΠΈ Π°ΡΠΎΠΌΠ° Π°Π·ΠΎΡΠ° Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Π°. ΠΠ΅ ΠΌΠ΅Π½Π΅Π΅ Π·Π½Π°ΡΠΈΠΌΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ: Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΡ, ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅. Π¦Π΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡΡ Π³Π΅ΡΠ΅ΡΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ Π½ΠΎΠ²ΡΠΌΠΈ Π² Ρ
ΠΈΠΌΠΈΠΈ Π°Π»ΠΊΠ΅Π½ΠΈΠ»ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠ², ΡΠ΄Π°ΡΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ
ΠΈΡ
5-(2-Π½ΠΈΡΡΠΎΠ°Π»ΠΊΠ΅Π½ΠΈΠ»)- ΠΈ 5-(2-Π°ΡΠΎΠΈΠ»Π²ΠΈΠ½ΠΈΠ»)Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ ΠΈ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡ Π½ΠΎΠ²ΡΠ΅ Π±ΠΈΠΎΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ.Β Π ΠΎΠ³Π»ΡΠ΄ΠΎΠ²ΡΠΉ ΡΡΠ°ΡΡΡ Π²ΠΏΠ΅ΡΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ ΡΠ° ΡΠ·Π°Π³Π°Π»ΡΠ½Π΅Π½Ρ Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½Ρ Π΄ΠΆΠ΅ΡΠ΅Π»Π°, ΡΠΊΡ ΡΡΠΎΡΡΡΡΡΡΡ Ρ
ΡΠΌΡΡ Π²ΡΡΡ
ΡΠΈΠΏΡΠ² Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ² ΡΠΊ Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΡ
ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ½ΠΈΡ
ΡΡΠ±ΡΡΡΠ°ΡΡΠ² ΡΠ° ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΠΈΠΊΡΠ² Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΡΡΡΠ²Π°Π½Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½. ΠΠ΅ΡΠ°Π»ΡΠ½ΠΎ ΡΠΎΠ·Π³Π»ΡΠ½ΡΡΡ Π΄Π²Π° ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΈ Π΄ΠΎ ΡΡ
ΡΠΈΠ½ΡΠ΅Π·Ρ: 1) ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΄ΡΠ° Π½Π° Π±Π°Π·Ρ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΠ½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ; 2) Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·Π°ΡΡΡ ΡΡΠ·Π½ΠΎΠΌΠ°Π½ΡΡΠ½ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
ΡΠΌΡΠ΄Π°Π·ΠΎΠ»Ρ. ΠΡΡΠ³ΠΈΠΉ Π²Π°ΡΡΠ°Π½Ρ Ρ Π΄ΠΎΠΌΡΠ½ΡΡΡΠΈΠΌ Ρ Π²ΠΊΠ»ΡΡΠ°Ρ Π² ΡΠ΅Π±Π΅ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ ΠΌΠ΅ΡΠΈΠ»ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ² ΡΠ· ΠΊΠ°ΡΠ±ΠΎΠ½ΡΠ»ΡΠ½ΠΈΠΌΠΈ ΡΠΏΠΎΠ»ΡΠΊΠ°ΠΌΠΈ, ΡΠ΅Π°ΠΊΡΡΡ ΡΠΎΡΠΌΡΠ»ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ² ΡΠ· ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΡΠ΅Π°Π³Π΅Π½ΡΠ°ΠΌΠΈ ΡΠ° ΡΠ»ΡΠ΄Π°ΠΌΠΈ ΡΠΎΡΡΠΎΡΡ, Π° ΡΠ°ΠΊΠΎΠΆ ΡΠ΅Π°ΠΊΡΡΡ Π΄Π΅Π³ΡΠ΄ΡΠ°ΡΠ°ΡΡΡ ΡΠ° Π΄Π΅Π³ΡΠ΄ΡΠΎΠ³Π°Π»ΠΎΠ³Π΅Π½ΡΠ²Π°Π½Π½Ρ Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ². ΠΠ΅ΡΠ°Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΠΎΠ΄Π΅ΡΠΆΠ°Π½Π½Ρ Π°Π»ΠΊΠ΅Π½ΡΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ², ΠΎΠΊΡΠ΅ΡΠ»Π΅Π½Ρ ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½Ρ ΠΌΠ΅ΠΆΡ ΡΠ° ΡΠΎΠ·ΠΊΡΠΈΡΠΎ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ½ΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π». ΠΡΠΎΠ±Π»ΠΈΠ²Π° ΡΠ²Π°Π³Π° ΠΏΡΠΈΠ΄ΡΠ»Π΅Π½Π° Π²Π»Π°ΡΠ½ΠΈΠΌ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½ΡΠΌ Π°Π²ΡΠΎΡΡΠ² Π· ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ Π½ΠΎΠ²ΠΈΡ
ΡΠΈΠΏΡΠ² 4-Ρ
Π»ΠΎΡΠΎ-5-Π°Π»ΠΊΠ΅Π½ΡΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
5-ΡΠΎΡΠΌΡΠ»ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ². ΠΠ½Π°Π»ΡΠ· Ρ
ΡΠΌΡΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ² Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ² ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΡΡ
ΡΡΡΠΎΠ³Ρ ΠΊΠ»Π°ΡΠΈΡΡΠΊΠ°ΡΡΡ ΡΠ° ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΡΠ²Π°ΡΠΈ Π½Π°ΠΉΡΠΈΠΏΠΎΠ²ΡΡΡ ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠΎ Π½ΠΈΡ
, Ρ ΠΏΠ΅ΡΡΡ ΡΠ΅ΡΠ³Ρ, Π²Π°ΡΡΠΎ Π²ΡΠ΄Π½Π΅ΡΡΠΈ ΡΠ΅Π°ΠΊΡΡΡ ΡΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ, ΡΠΊΡ Π·Π°Π·Π²ΠΈΡΠ°ΠΉ ΡΠ΅Π°Π»ΡΠ·ΡΡΡΡΡΡ Π·Π° ΡΡΠ°ΡΡΡ Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° ΡΠ° ΡΠ½ΡΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠ° Π°Π±ΠΎ Π°ΡΠΎΠΌΠ° Π°Π·ΠΎΡΡ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Ρ. ΠΠ΅ ΠΌΠ΅Π½Ρ Π·Π½Π°ΡΠΈΠΌΠΈΠΌΠΈ Ρ ΡΡΠ·Π½ΠΎΠΌΠ°Π½ΡΡΠ½Ρ ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠ°: Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΎΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·Π°ΡΡΡ, ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ ΡΠ° Π²ΡΠ΄Π½ΠΎΠ²Π»Π΅Π½Π½Ρ. ΠΠΎΡΠ΅ΡΠ½ΠΎ Π²ΡΠ΄Π·Π½Π°ΡΠΈΡΠΈ, ΡΠΎ ΠΏΡΠΎΡΠ΅ΡΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΎΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·Π°ΡΡΡ Ρ Π½ΠΎΠ²ΠΈΠΌΠΈ Π² Ρ
ΡΠΌΡΡ Π°Π»ΠΊΠ΅Π½ΡΠ»ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ², Π²Π΄Π°Π»ΠΎ ΡΠΎΠ·ΠΊΡΠΈΡΡ Π½Π° ΠΏΡΠΈΠΊΠ»Π°Π΄Π°Ρ
ΡΡ
5-(2-Π½ΡΡΡΠΎΠ°Π»ΠΊΠ΅Π½ΡΠ»)- ΡΠ° 5-(2-Π°ΡΠΎΡΠ»Π²ΡΠ½ΡΠ»)Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π½ΠΈΠΊΡΠ² Ρ Π΄Π°ΡΡΡ Π·ΠΌΠΎΠ³Ρ ΠΎΡΡΠΈΠΌΡΠ²Π°ΡΠΈ Π½ΠΎΠ²Ρ Π±ΡΠΎΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½Ρ Π³ΡΠ±ΡΠΈΠ΄Π½Ρ ΡΡΡΡΠΊΡΡΡΠΈ.
CΠΈΠ½ΡΠ΅Π· ΡΠ° Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π°Π·ΠΎΠ»ΡΠ»ΡΡΠΎΠΎΡΡΠΎΠ²ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡ
oai:ojs.journals.uran.ua:article/88983The review systematizes the published data concerning the methods of synthesis of azoles (imidazoles, oxazoles, thiazoles, pyrazoles, triazoles, and tetrazoles) functionalized by the carboxymethyl thiol fragment; the results of studies of the biological activity of this class of compounds have been also analysed. Today the main directions for the synthesis of azolylthioacetic acids and their derivatives are reactions of azoles that contain the thiol group with haloacetic acids and their derivatives, and the nucleophilic substitution of halogen in the haloazoles under the action of thioglycolic acid. Moreover, the addition of thioles to multiple bonds, activated with electron withdrawing groups has found its application together with formation of the azole cycle from heterofunctional systems that already contain the component of thioacetic acid. To obtain polyfunctional derivatives of azolylthioacetic acids the modification of azole functional groups that already contain the fragment of thioacetic acid is sometimes used. The summary of the published data gives strong reasons to assert that the derivatives of azolylthioacetic acids are characterized by diverse biological effects. For instance, they are characterized by the antioxidant, hypoglycemic, antitubercular, analgesic, antiviral, antimicrobial, and antifungal activity. The material analysed indicates that the search for new bioactive compounds among the azolylthioacetic acids is very promising.Π ΠΎΠ±Π·ΠΎΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌ ΡΠΈΠ½ΡΠ΅Π·Π° Π°Π·ΠΎΠ»ΠΎΠ² (ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»Π°, ΠΎΠΊΡΠ°Π·ΠΎΠ»Π°, ΡΠΈΠ°Π·ΠΎΠ»Π°, ΠΏΠΈΡΠ°Π·ΠΎΠ»Π°, ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎΠ² ΠΈ ΡΠ΅ΡΡΠ°Π·ΠΎΠ»Π°), ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΈΠΎΠ»ΡΠ½ΡΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ° ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ. ΠΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌΠΈ ΡΠΈΠ½ΡΠ΅Π·Π° Π°Π·ΠΎΠ»ΠΈΠ»ΡΠΈΠΎΡΠΊΡΡΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ ΠΈ ΠΈΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½Ρ ΡΠ²Π»ΡΡΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π°Π·ΠΎΠ»ΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΠΎΠ»ΡΠ½ΡΡ Π³ΡΡΠΏΠΏΡ, Ρ Π³Π°Π»ΠΎΠ³Π΅Π½ΡΠΊΡΡΡΠ½ΡΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ ΠΈ ΠΈΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ, Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π³Π°Π»ΠΎΠ³Π΅Π½Π° Π² Π³Π°Π»ΠΎΠ³Π΅Π½Π°Π·ΠΎΠ»Π°Ρ
ΠΏΡΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠΈΠΎΠ³Π»ΠΈΠΊΠΎΠ»Π΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π½Π°ΡΠ»ΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΈΠΎΠ»ΠΎΠ² ΠΊ ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²ΡΠ·ΡΠΌ, Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΡΠΌΠΈ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²ΠΊΠ°ΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π·ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° Ρ Π³Π΅ΡΠ΅ΡΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΆΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΡΠ°Π³ΠΌΠ΅Π½Ρ ΡΠΈΠΎΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π°Π·ΠΎΠ»ΠΈΠ»ΡΠΈΠΎΡΠΊΡΡΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π²Π°ΡΠΈΠ°Π½Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ Π°Π·ΠΎΠ»ΠΎΠ² Ρ ΡΠΆΠ΅ ΠΈΠΌΠ΅ΡΡΠΈΠΌΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠΎΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. ΠΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
Π΄Π°Π΅Ρ Π²ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌ Π°Π·ΠΎΠ»ΠΈΠ»ΡΠΈΠΎΡΠΊΡΡΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ ΡΠ²ΠΎΠΉΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π·Π½ΠΎΠΏΠ»Π°Π½ΠΎΠ²ΠΎΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π΄Π»Ρ Π½ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π° Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠ½Π°Ρ, Π³ΠΈΠΏΠΎΠ³Π»ΠΈΠΊΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΡΡΠ±Π΅ΡΠΊΡΠ»Π΅Π·Π½Π°Ρ, Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½Π°Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½Π°Ρ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ³ΡΠΈΠ±ΠΊΠΎΠ²Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΠΈΡΠΊΠ° Π½ΠΎΠ²ΡΡ
Π±ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² Π² ΡΡΠ΄Ρ Π°Π·ΠΎΠ»ΠΈΠ»ΡΠΈΠΎΡΠΊΡΡΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ.Π ΠΎΠ³Π»ΡΠ΄Ρ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½Ρ Π΄Π°Π½Ρ ΡΠΎΠ΄ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΡΠ² ΡΠΈΠ½ΡΠ΅Π·Ρ Π°Π·ΠΎΠ»ΡΠ² (ΡΠΌΡΠ΄Π°Π·ΠΎΠ»ΡΠ², ΠΎΠΊΡΠ°Π·ΠΎΠ»ΡΠ², ΡΡΠ°Π·ΠΎΠ»ΡΠ², ΠΏΡΡΠ°Π·ΠΎΠ»ΡΠ², ΡΡΠΈΠ°Π·ΠΎΠ»ΡΠ² ΡΠ° ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΡΠ²), ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠΌΠ΅ΡΠΈΠ»ΡΡΠΎΠ»ΡΠ½ΠΈΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ, Π° ΡΠ°ΠΊΠΎΠΆ ΠΏΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π΄Π°Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡ ΡΠΏΠΎΠ»ΡΠΊ. ΠΡΠ½ΠΎΠ²Π½ΠΈΠΌΠΈ Π½Π°ΠΏΡΡΠΌΠΊΠ°ΠΌΠΈ ΡΠΈΠ½ΡΠ΅Π·Ρ Π°Π·ΠΎΠ»ΡΠ»ΡΡΠΎΠΎΡΡΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ ΡΠ° ΡΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π½Π° ΡΡΠΎΠ³ΠΎΠ΄Π½Ρ Ρ ΡΠ΅Π°ΠΊΡΡΡ Π°Π·ΠΎΠ»ΡΠ², ΡΠΎ ΠΌΡΡΡΡΡΡ ΡΡΠΎΠ»ΡΠ½Ρ Π³ΡΡΠΏΡ, ΡΠ· Π³Π°Π»ΠΎΠ³Π΅Π½ΠΎΠΎΡΡΠΎΠ²ΠΈΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ ΡΠ° ΡΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΠΌΠΈ, Π½ΡΠΊΠ»Π΅ΠΎΡΡΠ»ΡΠ½Π΅ Π·Π°ΠΌΡΡΠ΅Π½Π½Ρ Π³Π°Π»ΠΎΠ³Π΅Π½Ρ Π² Π³Π°Π»ΠΎΠ³Π΅Π½ΠΎΠ°Π·ΠΎΠ»Π°Ρ
ΠΏΡΠΈ Π΄ΡΡ ΡΡΠΎΠ³Π»ΡΠΊΠΎΠ»Π΅Π²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ. ΠΠΊΡΡΠΌ ΡΡΠΎΠ³ΠΎ Π·Π½Π°ΠΉΡΠ»ΠΈ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ ΡΡΠΎΠ»ΡΠ² Π΄ΠΎ ΠΊΡΠ°ΡΠ½ΠΈΡ
Π·Π²βΡΠ·ΠΊΡΠ², Π°ΠΊΡΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΠΈΠΌΠΈ ΡΠ³ΡΡΠΏΠΎΠ²Π°Π½Π½ΡΠΌΠΈ, Π° ΡΠ°ΠΊΠΎΠΆ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ Π°Π·ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Ρ Π· Π³Π΅ΡΠ΅ΡΠΎΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ, ΡΠΊΡ Π²ΠΆΠ΅ ΠΌΡΡΡΡΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½Ρ ΡΡΠΎΠΎΡΡΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ. ΠΠ»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΠΏΠΎΠ»ΡΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π°Π·ΠΎΠ»ΡΠ»ΡΡΠΎΠΎΡΡΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ ΡΠ½ΠΎΠ΄Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡΡΡ Π²Π°ΡΡΠ°Π½Ρ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
Π³ΡΡΠΏ Π°Π·ΠΎΠ»ΡΠ² ΡΠ· Π²ΠΆΠ΅ Π½Π°ΡΠ²Π½ΠΈΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠΎΠΎΡΡΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ. Π£Π·Π°Π³Π°Π»ΡΠ½Π΅Π½Π½Ρ Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
Π΄Π°Π½ΠΈΡ
Π΄Π°Ρ Π²ΡΡ ΠΏΡΠ΄ΡΡΠ°Π²ΠΈ ΡΡΠ²Π΅ΡΠ΄ΠΆΡΠ²Π°ΡΠΈ, ΡΠΎ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΠΌ Π°Π·ΠΎΠ»ΡΠ»ΡΡΠΎΠΎΡΡΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ Π²Π»Π°ΡΡΠΈΠ²Π° ΡΡΠ·Π½ΠΎΠΏΠ»Π°Π½ΠΎΠ²Π° Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Π° Π΄ΡΡ. ΠΠΎΠΊΡΠ΅ΠΌΠ°, Π΄Π»Ρ Π½ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π° Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠ½Π°, Π³ΡΠΏΠΎΠ³Π»ΡΠΊΠ΅ΠΌΡΡΠ½Π°, ΠΏΡΠΎΡΠΈΡΡΠ±Π΅ΡΠΊΡΠ»ΡΠΎΠ·Π½Π°, Π°Π½Π°Π»Π³Π΅ΡΠΈΡΠ½Π°, ΠΏΡΠΎΡΠΈΠ²ΡΡΡΡΠ½Π°, Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Π° ΡΠ° ΠΏΡΠΎΡΠΈΠ³ΡΠΈΠ±ΠΊΠΎΠ²Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ. ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΡΠ°Π» Π·Π°ΡΠ²ΡΠ΄ΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎΡΡΠΊΡ Π½ΠΎΠ²ΠΈΡ
Π±ΡΠΎΠ°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π² ΡΡΠ΄Ρ Π°Π·ΠΎΠ»ΡΠ»ΡΡΠΎΠΎΡΡΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ
- β¦