230 research outputs found

    The Canadian Outside Director: Great Expectations

    Get PDF

    Canadian Antitrust Aspects of Competing in Foreign Markets

    Get PDF

    The Foreign Investment Review Act: Phase I

    Get PDF

    Decoherence and Programmable Quantum Computation

    Get PDF
    An examination of the concept of using classical degrees of freedom to drive the evolution of quantum computers is given. Specifically, when externally generated, coherent states of the electromagnetic field are used to drive transitions within the qubit system, a decoherence results due to the back reaction from the qubits onto the quantum field. We derive an expression for the decoherence rate for two cases, that of the single-qubit Walsh-Hadamard transform, and for an implementation of the controlled-NOT gate. We examine the impact of this decoherence mechanism on Grover's search algorithm, and on the proposals for use of error-correcting codes in quantum computation.Comment: submitted to Phys. Rev. A 35 double-spaced pages, 2 figures, in LaTe

    Automatic Quantum Error Correction

    Get PDF
    Criteria are given by which dissipative evolution can transfer populations and coherences between quantum subspaces, without a loss of coherence. This results in a form of quantum error correction that is implemented by the joint evolution of a system and a cold bath. It requires no external intervention and, in principal, no ancilla. An example of a system that protects a qubit against spin-flip errors is proposed. It consists of three spin 1/2 magnetic particles and three modes of a resonator. The qubit is the triple quantum coherence of the spins, and the photons act as ancilla.Comment: 16 pages 12 fig LaTex uses multicol, graphicx expanded version of letter submitted to Phys Rev Let

    Rapid solution of problems by nuclear-magnetic-resonance quantum computation

    Get PDF
    We offer an improved method for using a nuclear-magnetic-resonance quantum computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the application of the NMRQC are exponential diminishment of density-matrix elements with the number of bits, threatening weak signal levels, and the high cost of preparing a suitable starting state. A third obstacle is a heretofore unnoticed restriction on measurement operators available for use by an NMRQC. Variations on the function classes of the Deutsch-Jozsa problem are introduced, both to extend the range of problems advantageous for quantum computation and to escape all three obstacles to use of an NMRQC. By adapting it to one such function class, the Deutsch-Jozsa problem is made solvable without exponential loss of signal. The method involves an extra work bit and a polynomially more involved Oracle; it uses the thermal-equilibrium density matrix systematically for an arbitrary number of spins, thereby avoiding both the preparation of a pseudopure state and temporal averaging.Comment: 19 page

    Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates – Relation between textural control on effective element fluxes and resulting carbonate phase

    Get PDF
    Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed reaction rates are highest for the replacement of the initially highly porous coral and lowest for the compact structure of a single aragonite crystal. Therefore, the reaction progress equally depends on effective element fluxes between the fluid at the reaction interface and the bulk solution surrounding the test material as well as the reactive surface area. This study demonstrates that the textural and microstructural properties of the parent material have a significant influence on the chemical composition of the product phase. Moreover, our data highlight the importance of effective fluid-mediated element exchange between the fluid at the reaction interface and the bulk solution controlled by the local microstructure
    corecore