144 research outputs found

    Characterization of the sheep Complement Factor B gene (CFB)

    Get PDF
    The Complement Factor B gene (CFB) of the alternative complement pathway has been identified in the sheep Major Histocompatibility Complex (MHC) and its genomic sequence determined. CFB is located approximately 600bp upstream of the complement C2 gene, contains 18 exons, and manifests the domain signature characteristic of CFB protein. Thirteen single nucleotide polymorphisms were identified in merino sheep and interbreed variation was identified by comparison with International Sheep Genomics Consortium data. Two predicted non synonymous substitutions were observed and in-silico analysis indicates that these are likely to have a destabilising effect on the protein structure. Sheep and cattle CFB were compared and shown to contain a common nine nucleotide deletion in exon 18 relative to human CFB. Predicted CFB amino acid sequences for these two species contain 761 aa relative to 764 aa in the human orthologue. Sequencing of the cosmid and BAC clones used in this study permitted the relative positions of three adjacent loci to be determined and showed that the previously described microsatellite locus (BfMs) is located within SKIV2L

    Polymorphism of sheep MHC Class IIb gene TAPASIN

    Get PDF
    The Major Histocompatibility Complex (MHC) is one of the most gene dense regions in the genome and studies in several species have shown significant associations between the MHC and disease. The endoplasmic reticular glycoprotein, tapasin, is involved in the MHC class I antigen presentation pathway. Sheep TAPASIN is located in the class IIb region of the MHC. Sheep TAPASIN was subcloned from BAC and cosmid genomic clones and DNA sequenced. TAPASIN is 9549 bp in length and encodes a protein of 447 amino acids. The structure of sheep TAPASIN was similar to other mammals and consisted of eight exons with a distinctively larger intron between exon three and four. Sheep TAPASIN gene had high sequence identity with other mammalian TAPASINs. The TAPASIN gene sequence is conserved across many mammalian species and is possibly maintained through purifying selection with the average ratio of ds/dn of 3.9. Twenty-six SNPs in sheep TAPASIN were identified

    Polyketide synthesis genes associated with toxin production in two species of Gambierdiscus (Dinophyceae)

    Get PDF
    Background Marine microbial protists, in particular, dinoflagellates, produce polyketide toxins with ecosystem-wide and human health impacts. Species of Gambierdiscus produce the polyether ladder compounds ciguatoxins and maitotoxins, which can lead to ciguatera fish poisoning, a serious human illness associated with reef fish consumption. Genes associated with the biosynthesis of polyether ladder compounds are yet to be elucidated, however, stable isotope feeding studies of such compounds consistently support their polyketide origin indicating that polyketide synthases are involved in their biosynthesis. Results Here, we report the toxicity, genome size, gene content and transcriptome of Gambierdiscus australes and G. belizeanus. G. australes produced maitotoxin-1 and maitotoxin-3, while G. belizeanus produced maitotoxin-3, for which cell extracts were toxic to mice by IP injection (LD50 = 3.8 mg kg-1). The gene catalogues comprised 83,353 and 84,870 unique contigs, with genome sizes of 32.5 ± 3.7 Gbp and 35 ± 0.88 Gbp, respectively, and are amongst the most comprehensive yet reported from a dinoflagellate. We found three hundred and six genes involved in polyketide biosynthesis, including one hundred and ninty-two ketoacyl synthase transcripts, which formed five unique phylogenetic clusters. Conclusions Two clusters were unique to these maitotoxin-producing dinoflagellate species, suggesting that they may be associated with maitotoxin biosynthesis. This work represents a significant step forward in our understanding of the genetic basis of polyketide production in dinoflagellates, in particular, species responsible for ciguatera fish poisoning.Postprin

    Probabilistic classification of acute myocardial infarction from multiple cardiac markers

    Get PDF
    Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78–0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1–6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI

    MTHFD1 controls DNA methylation in Arabidopsis.

    Get PDF
    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases

    Trends and Regional Differences in Breastfeeding in Germany From 1871 To 1937

    Full text link
    This article describes trends and regional differences in breastfeeding within Germany from 1870 to 1937. Sharp regional differences in both the in cidence and duration of breastfeeding are present around 1910. There is a com plex pattern of trends in infant-feeding practices. Breastfeeding declined in urban areas between the late nineteenth century and the first World War. A strong nationwide resurgence in the incidence of breastfeeding occurred between the two world wars, accompanied by a decline in the average duration of breastfeeding. By 1937, the formerly great regional differences in breastfeeding had nearly dis appeared. The article also discusses social, economic, cultural, and historical variables affecting infant-feeding practices, including local breastfeeding customs, a national infant welfare campaign, and allowances to nursing mothers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67272/2/10.1177_036319908501000203.pd

    Non-Integrative Lentivirus Drives High-Frequency cre-Mediated Cassette Exchange in Human Cells

    Get PDF
    Recombinase mediated cassette exchange (RMCE) is a two-step process leading to genetic modification in a specific genomic target sequence. The process involves insertion of a docking genetic cassette in the genome followed by DNA transfer of a second cassette flanked by compatible recombination signals and expression of the recombinase. Major technical drawbacks are cell viability upon transfection, toxicity of the enzyme, and the ability to target efficiently cell types of different origins. To overcome such drawbacks, we developed an RMCE assay that uses an integrase-deficient lentivirus (IDLV) vector in the second step combined with promoterless trapping of double selectable markers. Additionally, recombinase expression is self-limiting as a result of the exchangeable reaction, thus avoiding toxicity. Our approach provides proof-of-principle of a simple and novel strategy with expected wide applicability modelled on a human cell line with randomly integrated copies of a genetic landing pad. This strategy does not present foreseeable limitations for application to other cell systems modified by homologous recombination. Safety, efficiency, and simplicity are the major advantages of our system, which can be applied in low-to-medium throughput strategies for screening of cDNAs, non-coding RNAs during functional genomic studies, and drug screening

    Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Get PDF
    Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p \u3c 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody. Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation

    A 'synthetic-sickness' screen for senescence re-engagement targets in mutant cancer backgrounds.

    Get PDF
    Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAβGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments
    corecore