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Abstract 21 

 22 

The Major Histocompatibility Complex (MHC) is one of the most gene dense regions 23 

in the genome and studies in several species have shown significant associations 24 

between the MHC and disease. The endoplasmic reticular glycoprotein, tapasin, is 25 

involved in the MHC class I antigen presentation pathway. Sheep TAPASIN is located 26 

in the class IIb region of the MHC. Sheep TAPASIN was subcloned from BAC and 27 

cosmid genomic clones and DNA sequenced. TAPASIN is 9549 bp in length and 28 

encodes a protein of 447 amino acids. The structure of sheep TAPASIN was similar to 29 

other mammals and consisted of eight exons with a distinctively larger intron between 30 

exon three and four. Sheep TAPASIN gene had high sequence identity with other 31 

mammalian TAPASINs. The TAPASIN gene sequence is conserved across many 32 

mammalian species and is possibly maintained through purifying selection with the 33 

average ratio of ds/dn of 3.9. Twenty-six SNPs in sheep TAPASIN were identified. 34 

 35 
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Tapasin is an MHC class IIb region encoded (TAPASIN) protein involved in the 37 

classical class I antigen presentation pathway. Tapasin, also known as transporter 38 

associated with antigen processing binding protein (TAPBP), is an endoplasmic 39 

reticular glycoprotein (Garbi et al. 2003). In the class I presentation pathway, tapasin 40 

has several important functions such as the recruitment of transporters associated with 41 

antigen processing protein (TAP) in the endoplasmic reticulum (ER) (Lehner et al. 42 

1998), stabilisation of TAP and class I molecule interactions required for optimal 43 

peptide loading (Ortmann et al. 1997), assembly of the class I heavy chain (Garbi et 44 

al. 2000), peptide selection in the peptide loading complex (PLC) (Garbi et al. 2000; 45 



Howarth et al. 2004) and retention of the class I molecules in the endoplasmic 46 

reticulum (Grandea III et al. 1995; Grandea III et al. 2000; Grandea III & Van Kaer 47 

2001). Mutations within the TAPASIN gene can significantly disrupt the functional 48 

role of tapasin in the MHC class I presentation pathway (Copeman et al. 1998). The 49 

“loss of function” phenotype results in a decrease of antigen presentation at the cell 50 

surface (Copeman et al. 1998). The TAPASIN gene in sheep is located within the class 51 

IIb region of the sheep MHC on chromosome 20 (Mahdy et al. 1989). Unlike humans 52 

and most other mammals, the class II region in sheep is split into IIa and IIb regions 53 

separated by a non-MHC region (Liu et al. 2006). 54 

 55 

Several studies have shown direct or indirect associations between the sheep MHC 56 

and Quantitative Trait Loci (QTL) for resistance to disease. In Scottish blackface 57 

sheep naturally infested with Ostertagia circumcincta, certain MHC class II antigens 58 

were associated with 98% lower egg count (Schwaiger et al. 1995). A recent study in 59 

Scottish blackface sheep aimed at identifying QTLs for a variety of parasite resistance 60 

indicators showed that there was a significant chromosome wide QTL located within 61 

the class IIb region (Davies et al. 2006). Significant associations between MHC and 62 

intestinal nematodes have been reported in several other studies (Outteridge et al. 63 

1996; Paterson et al. 1998; van Haeringen et al. 1999). Recently, microarray analysis 64 

of the response of Perendale sheep to nematodes showed that the more resistant lambs 65 

had higher expression of the MHC class II genes (Diez-Tascon et al. 2005). In 66 

Rhonschaf sheep, significant associations between faecal egg counts (FEC) and the 67 

markers OarCp73, DYMS1 and BM1815 was observed. The DYA gene located within 68 

the class IIb subregion of the MHC is closely linked to the microsatellite DYMS  and 69 



is a possible candidate gene for conferring resistance to Haemonchus contortus in 70 

these sheep (Charon 2004).  71 

This report describes the structure, DNA sequence and single nucleotide 72 

polymorphisms (SNP) of TAPASIN, which is located within the sheep MHC Class IIb 73 

gene region on chromosome 20.  An analysis of the ratio of synonymous to non-74 

synonymous substitutions in the coding region of this gene across several mammalian 75 

species was also performed.  This study is part of an ongoing development of a 76 

haplotypic analysis of the sheep MHC class II region. Information from this study will 77 

assist in understanding the important role genes within the MHC play in immunity to 78 

disease. 79 

Genomic DNA was isolated from the leukocytes from individual merino sheep using 80 

a Qiagen tissue DNA isolation kit according to manufacturer’s instructions.  DNA 81 

was suspended in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and stored at -20oC 82 

until required. TAPASIN degenerative PCR primers 83 

(5’CTGYCTTGYRTCCCACTTCT3’and 5’CCAGGGTGACCTCAGCRCTG 3’) 84 

were identified from the alignment of human and mouse TAPASIN gene sequences. 85 

These primers amplify a small 259bp DNA fragment of the sheep TAPASIN gene 86 

(Qin 2009) that could be sequenced and from which overgo primers (Gustafson et al. 87 

2003) were designed (5’TGCAGAGAGGCTTACAGAGCCATC3’ and 88 

5’CCTGAGACATCACTCAGATGGCTC3’). The PCR reaction mix (50 ul) 89 

comprised: 100 ng sheep genomic DNA, 1 X PCR buffer (Invitrogen), 1.5 mM 90 

MgCl2, 200 uM dNTP, 5 pmol of each primer (Geneworks), 0.2 mg/ml BSA (Roche) 91 

and 2.5U Platnium Taq polymerase (Invitrogen). The Overgo primers were 92 

radioactively labelled using overgo technology (Gustafson et al., 2003) and hybridised 93 

to BAC (CHORI 243) genomic DNA library filters in a buffered solution containing 94 



20 × SSPE, 1%BSA, 7%SDS and 0.5M EDTA. The filters were incubated at 53oC 95 

overnight, and washed in 1xSSC buffer containing 0.1% SDS. The filters were sealed 96 

in plastic and exposed to Kodak x-ray film with an intensifying screens at -80°C for 2 97 

days prior to development of the film. DNA from the CHORI clone 461K3 clone was 98 

isolated using Qiagen large construct kit according to the manufacturer’s protocol and 99 

digested with Pst I and cloned into pGEM5f. Random clones were selected and 100 

sequenced using M13 primers by Macrogen (Korea). Clones containing TAPASIN 101 

sequences were subjected to further sequencing. 102 

Multiple pass DNA sequencing resulted in approximately 11 Kbp of quality sequence, 103 

with TAPASIN identified as being 9549 bp in length and encoding a predicted protein 104 

of 447 amino acids. The overall structure of the sheep TAPASIN gene (Genbank 105 

accession EU814901) was similar to that reported for several other mammals, cattle 106 

(NW_001494145), chimpanzee (NW_001236523), dog (NW_876254), human 107 

(NW_923073) and mouse (NW_001030615). A consensus genetic structure for sheep 108 

TAPASIN was determined from analysis of the predictions from GENSCAN (Burge & 109 

Karlin 1997) Burge and Karlin, 1997), TWINSCAN (Korf et al. 2001) and 110 

FGENESH (http://www.softberry.com). Sheep TAPASIN was found to comprise eight 111 

exons, with a distinctively larger intron of 5526 bp found between exons three and 112 

four. 113 

Clustal W (Thompson et al. 1994) multiple sequence alignment was performed with 114 

TAPASIN from sheep, cattle, human, rat, mouse, horse, chimpanzee, macaca, dog and 115 

zebrafish. This analysis showed that there was significant amino acid sequence 116 

conservation (Figure 1). The various features of tapasin including signal peptide, C 117 

and V immunoglobulin domains, conserved cysteine residues, motifs 3 and 4, 118 

transmembrane region and cytoplasmic tail could all be identified and are also shown 119 

http://www.softberry.com/�


in Figure 1.  These features were identical to those shown previously for rat, Atlantic 120 

salmon and several other mammals (Ortmann et al. 1997; Deverson et al. 2001; 121 

Jorgensen et al. 2007). The average DNA sequence identity between the coding 122 

sequence of sheep TAPASIN gene and other organisms was 85.3% whereas the amino 123 

acid sequence identity was slightly lower at 83.6%. BLAST sequence alignment 124 

showed higher DNA sequence identity with cattle TAPASIN (95%) when compared to 125 

a similar analysis with human TAPASIN (84%). A bootstrapped Neighbour-Joining 126 

phylogenetic tree was constructed using the Clustal W multiple sequence alignment. 127 

100 percent of the trees obtained placed the sheep and cattle tapasin in a separate 128 

clade from the primate tapasins (1000 bootstraps), indicating, as expected, that sheep 129 

tapasin is more closely related to cattle tapasin than to the primate tapasins (Sup. 130 

Figure 1). Relative to the cattle amino acid sequence, there are amino acid differences 131 

in the IgV domain (positions 170 and 171). However the observed change at position 132 

170 appears to predate the generation of the ungulate lineage as it is also present in 133 

primates, horses and zebrafish. The variation position 171 however appears to be 134 

unique to sheep, at least in this small cohort of species. In the TPN motif 3 domain, 135 

there is a deleted amino acid in cattle relative to the other species. This position in 136 

sheep is the identical to horse TAPASIN implying a three base pair deletion has 137 

occurred in cattle. Unique amino acid changes occur at position 4 in the leader 138 

sequence and position 323 in the Ig C domain. 139 

Synonymous and non-synonymous nucleotide substitutions were analysed using the 140 

SNAP software package (www.hiv.lanl.gov and 141 

http://hcv.lanl.gov/content/sequence/SNAP/SNAP.html) (Nei & Gojobori 1986; 142 

Korber 2000). This analysis showed that the TAPASIN coding sequence is conserved 143 

across all the mammalian species studied. The average ratio of Jukes-Cantor corrected 144 



ds/dn was 3.91 (ranging from Jukes-Cantor corrected ds/dn of 2.48 for chimpanzee 145 

versus human to a Jukes-Cantor corrected ds/dn of 4.88 for sheep versus human). This 146 

high conservation is most likely maintained through purifying selection. Tapasin is an 147 

important component of the MHC class I assembly with several domains shown to 148 

have critical functions in the assembly process (Rizvi & Raghavan 2009). Therefore, 149 

it is not surprising that tapasin displays high amino acid sequence conservation 150 

between species. The amino acid sequence comparisons are shown in supplementary 151 

Figure 2.  152 

Sequencing was performed on six unrelated merino sheep. Pairwise alignment of 153 

DNA sequences using Vector NTI software (Invitrogen) resulted in the direct 154 

identification of thirteen SNPs. Furthermore, when BLAST alignment of the 155 

consensus sheep sequence obtained in this study was performed against the genome 156 

sequence data generated by the International Sheep Genome Consortium (ISGC) 157 

(https://isgcdata.agresearch.co.nz/), thirteen additional SNPs were identified. Each  158 

SNP identified from the ISGC data occurred either within different breeds of sheep or 159 

multiple sheep within one breed. Seven of the 13 SNP (54%) identified in this project 160 

by sequence alignment of the 6 unrelated merino sheep were also independently 161 

verified through the BLAST alignment with the ISGC data. The estimated variation 162 

within the sheep TAPASIN gene is approximately one SNP per 367 bp. The SNP 163 

density observed for TAPASIN was comparable with the genome wide SNP survey 164 

(Kijas et al, 2009). All the SNPs identified in this study were located within non-165 

coding regions of the gene.  It was observed however, that the DNA sequence 166 

generated in this study when subject to BLAST alignment with the ISGC data, the 167 

matches in the ISGC data did not completely span the entire gene, suggesting possible 168 



gaps in the ISGC sequence data. Details and position of all the SNPs identified in this 169 

study and the ISGC data are shown in Table 1.  170 

The SNPs that have been identified in this study will contribute to an essential 171 

framework of SNPs in the MHC class IIb region and thus will be an important 172 

resource for the future characterisation and dissection of the sheep MHC haplotypes 173 

and their possible role in disease.  174 
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