120 research outputs found

    Apathy in Lewy body disease and its effects on functional impairment over time

    Get PDF
    Background and objectivesApathy strongly affects function in Alzheimer’s disease and frontotemporal dementia, however its effect on function in Lewy Body Disease (LBD) has not been well-described. This study aims to (1) examine the prevalence and persistence of apathy in a large, national cohort of well-characterized patients with LBD, and (2) estimate the effect of apathy on function over time.MethodsStudy included 676 participants with mild cognitive impairment (MCI) or dementia in the National Alzheimer’s Coordinating Center Uniform Data Set. Participants were followed for an average of 3.4 ± 1.7 years and consistently had a primary diagnosis of LBD. Apathy was defined by clinician judgment, categorized into four mutually exclusive profiles: (1) never apathetic across all visits, (2) at least one but <50% of visits with apathy (intermittent apathy), (3) ≥50% but not all visits with apathy (persistent apathy), and (4) always apathy across all visits. Dementia severity was measured by baseline Clinical Dementia Rating score. Parkinsonism was defined by the presence of bradykinesia, resting tremor, rigidity, gait, and postural instability. Functional impairment was assessed using the Functional Assessment Questionnaire (FAQ).ResultsBaseline characteristics of the sample were: average age = 72.9 ± 6.9, years of education = 15.6 ± 3.4, Mini Mental State Exam (MMSE) = 24.4 ± 5.4, Geriatric Depression Scale (GDS) = 3.8 ± 3.2, FAQ = 12.0 ± 9.1. 78.8% were male and 89% were non-Hispanic white. Prevalence of apathy increased from 54.4% at baseline to 65.5% in year 4. 77% of participants had apathy at some point during follow-up. Independent of cognitive status and parkinsonian features, FAQ was significantly higher in participants with intermittent/persistent and always apathetic than never apathetic. Annual rate of decline in FAQ was faster in participants who were always apathetic than never apathy.DiscussionIn this large national longitudinal cohort of LBD patients with cognitive impairment, apathy was strongly associated with greater functional impairment at baseline and faster rate of decline over time. The magnitude of these effects were clinically important and were observed beyond the effects on function from participants’ cognitive status and parkinsonism, highlighting the importance of specifically assessing for apathy in LBD

    Ether Bridge Formation in Loline Alkaloid Biosynthesis

    Get PDF
    Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of an alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine

    Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Get PDF
    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    The 5th International Lafora Epilepsy Workshop: Basic science elucidating therapeutic options and preparing for therapies in the clinic

    Get PDF
    Lafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain. The workshop brought together nearly 100 clinicians, academic and industry scientists, trainees, National Institutes of Health (NIH) representation, and friends and family members of patients with LD. The workshop covered aspects of LD ranging from defining basic scientific mechanisms to elucidating a LD therapy or cure and a recently launched LD natural history study

    A Cis-Regulatory Map of the Drosophila Genome

    Get PDF
    Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide1, 2 has successfully identified specific subtypes of regulatory elements3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements4, chromatin states5, transcription factor binding sites6, 7, 8, 9, RNA polymerase II regulation8 and insulator elements10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships

    Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness

    Get PDF
    Low mean fundamental frequency (F0) in men’s voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F0 (an acoustic correlate of vocal fold size), F0 variation, intensity (loudness), utterance duration, and formant dispersion (Df, an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F0 variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F0, low Df, high intensity, and attractive word content across cycle phase and mating context. Low Df was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men’s voices because of the different types of information these vocal parameters provide
    corecore