425 research outputs found

    The m−m-dissimilarity map and representation theory of SLmSL_m

    Get PDF
    We give another proof that mm-dissimilarity vectors of weighted trees are points on the tropical Grassmanian, as conjectured by Cools, and proved by Giraldo in response to a question of Sturmfels and Pachter. We accomplish this by relating mm-dissimilarity vectors to the representation theory of SLm.SL_m.Comment: 11 pages, 8 figure

    Finite Schur filtration dimension for modules over an algebra with Schur filtration

    Full text link
    Let G be GL_N or SL_N as reductive linear algebraic group over a field k of positive characteristic p. We prove several results that were previously established only when N 2^N. Let G act rationally on a finitely generated commutative k-algebra A. Assume that A as a G-module has a good filtration or a Schur filtration. Let M be a noetherian A-module with compatible G action. Then M has finite good/Schur filtration dimension, so that there are at most finitely many nonzero H^i(G,M). Moreover these H^i(G,M) are noetherian modules over the ring of invariants A^G. Our main tool is a resolution involving Schur functors of the ideal of the diagonal in a product of Grassmannians.Comment: 22 pages; final versio

    Enhancing single-molecule photostability by optical feedback from quantum-jump detection

    Full text link
    We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level

    Continuous variable quantum cryptography using coherent states

    Get PDF
    We propose several methods for quantum key distribution (QKD) based upon the generation and transmission of random distributions of coherent or squeezed states, and we show that they are are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50 %, but they do not rely on "non-classical" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with gaussian statistics.Comment: 5 pages, 1 figure. In v2 minor rewriting for clarity, references adde

    Effect of Intensity Modulator Extinction on Practical Quantum Key Distribution System

    Full text link
    We study how the imperfection of intensity modulator effects on the security of a practical quantum key distribution system. The extinction ratio of the realistic intensity modulator is considered in our security analysis. We show that the secret key rate increases, under the practical assumption that the indeterminable noise introduced by the imperfect intensity modulator can not be controlled by the eavesdropper.Comment: 6 pages, 5 figures. EPJD accepte

    Electronic structure and superconductivity of Europium

    Full text link
    We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schro¹\ddot{o}dinger equation to move the occupied 4f valence states below the Γ1\Gamma_1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc\it bcc and hcp\it hcp structures are also found to agree with and follow a TcT_c trend similar to recent measurement by Debessai et al.1^1Comment: 8 page

    Experimental investigation of continuous variable quantum teleportation

    Get PDF
    We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity, F; and with signal transfer, T_{q}=T^{+}+T^{-}, and noise correlation, V_{q}=V_{in|out}^{+} V_{in|out}^{-}. We observed an optimum fidelity of 0.64 +/- 0.02, T_{q}= 1.06 +/- 0.02 and V_{q} =0.96 +/- 0.10. We discuss the significance of both T_{q}>1 and V_{q}<1 and their relation to the teleportation no-cloning limit.Comment: 4 pages, 4 figure

    Quantum teleportation over the Swisscom telecommunication network

    Get PDF
    We present a quantum teleportation experiment in the quantum relay configuration using the installed telecommunication network of Swisscom. In this experiment, the Bell state measurement occurs well after the entanglement has been distributed, at a point where the photon upon which data is teleported is already far away, and the entangled qubits are photons created from a different crystal and laser pulse than the teleported qubit. A raw fidelity of 0.93+/-0.04 has been achieved using a heralded single-photon source.Comment: 6 pages, 7 figures, updated references on May 3rd. To be published in Journal of the Optical Society of America B, Feature issue "Optical Quantum-Information Science", February 200

    Teleportation of continuous variable polarisation states

    Get PDF
    This paper discusses methods for the optical teleportation of continuous variable polarisation states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarisation states can be performed. Restricting ourselves to 3 squeezed beams, we demonstrate that polarisation state teleportation can still exceed the classical limit. The 3-squeezer schemes involve either the use of quantum non-demolition measurement or biased entanglement generated from a single squeezed beam. We analyse the efficacies of these schemes in terms of fidelity, signal transfer coefficients and quantum correlations

    Coherent pulse implementations of quantum cryptography protocols resistant to photon number splitting attacks

    Get PDF
    A new class of quantum cryptography (QC) protocols that are robust against the most general photon number splitting attacks in a weak coherent pulse implementation has been recently proposed. In this article we give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The eavesdropper (Eve) is supposed to have unlimited technological power while the honest parties (Alice and Bob) use present day technology, in particular an attenuated laser as an approximation of a single-photon source. They exploit the nonorthogonality of quantum states for decreasing the information accessible to Eve in the multi-photon pulses accidentally produced by the imperfect source. An implementation of some of these protocols using present day technology allow for a secure key distribution up to distances of ∌\sim 150 km. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon number splitting attacks.Comment: 16 pages, 11 figure
    • 

    corecore