6 research outputs found

    Molecular methods for tracking residual Plasmodium falciparum transmission in a close-to-elimination setting in Zanzibar

    Get PDF
    Molecular detection of low-density Plasmodium falciparum infections is essential for surveillance studies conducted to inform malaria control strategies in close-to-elimination settings. Molecular monitoring of residual malaria infections usually requires a large study size, therefore sampling and diagnostic processes need to be economical and optimized for high-throughput. A method comparison was undertaken to identify the most efficient diagnostic procedure for processing large collections of community samples with optimal test sensitivity, simplicity, and minimal costs.; In a reactive case detection study conducted on Zanzibar, parasitaemia of 4590 individuals of all ages was investigated by a highly sensitive quantitative (q) PCR that targets multiple var gene copies per parasite genome. To reduce cost, a first round of positivity screening was performed on pools of dried blood spots from five individuals. Ten cycles of a pre-PCR were performed directly on the filter paper punches, followed by qPCR. In a second round, samples of positive pools were individually analysed by pre-PCR and qPCR.; Prevalence in household members and neighbors of index cases was 1.7% (78/4590) with a geometric mean parasite density of 58 parasites/µl blood. Using qPCR as gold standard, diagnostic sensitivity of rapid diagnostic tests (RDTs) was 37% (29/78). Infections positive by qPCR but negative by RDT had mean densities of 15 parasites/µl blood.; The approach of pre-screening reactive case detection samples in pools of five was ideal for a low prevalence setting such as in Zanzibar. Performing direct PCR on filter paper punches saves substantial time and justifies the higher cost for a polymerase suitable for amplifying DNA directly from whole blood. Molecular monitoring in community samples provided a more accurate picture of infection prevalence, as it identified a potential reservoir of infection that was largely missed by RDT. The developed qPCR-based methodology for screening large sample sets represents primarily a research tool that should inform the design of malaria elimination strategies. It may also prove beneficial for diagnostic tasks in surveillance-response activities

    The case for the continued use of the genus name Mimulus for all monkeyflowers

    Get PDF
    The genus Mimulus is a well-studied group of plant species, which has for decades allowed researchers to address a wide array of fundamental questions in biology (Wu & al. 2008; Twyford & al. 2015). Linnaeus named the type species of Mimulus (ringens L.), while Darwin (1876) used Mimulus (luteus L.) to answer key research questions. The incredible phenotypic diversity of this group has made it the focus of ecological and evolutionary study since the mid-20th century, initiated by the influential work of Clausen, Keck, and Hiesey as well as their students and collaborators (Clausen & Hiesey 1958; Hiesey & al. 1971, Vickery 1952, 1978). Research has continued on this group of diverse taxa throughout the 20th and into the 21st century (Bradshaw & al. 1995; Schemske & Bradshaw 1999; Wu & al. 2008; Twyford & al. 2015; Yuan 2019), and Mimulus guttatus was one of the first non-model plants to be selected for full genome sequencing (Hellsten & al. 2013). Mimulus has played a key role in advancing our general understanding of the evolution of pollinator shifts (Bradshaw & Schemske 2003; Cooley & al. 2011; Byers & al. 2014), adaptation (Lowry & Willis 2010; Kooyers & al. 2015; Peterson & al. 2016; Ferris & Willis 2018; Troth & al. 2018), speciation (Ramsey & al. 2003; Wright & al. 2013; Sobel & Streisfeld 2015; Zuellig & Sweigart 2018), meiotic drive (Fishman & Saunders 2008), polyploidy (Vallejo-Marín 2012; Vallejo-Marín & al. 2015), range limits (Angert 2009; Sexton et al. 2011; Grossenbacher & al. 2014; Sheth & Angert 2014), circadian rhythms (Greenham & al. 2017), genetic recombination (Hellsten & al. 2013), mating systems (Fenster & Ritland 1994; Dudash & Carr 1998; Brandvain & al. 2014) and developmental biology (Moody & al. 1999; Baker & al. 2011, 2012; Yuan 2019). This combination of a rich history of study coupled with sustained modern research activity is unparalleled among angiosperms. Across many interested parties, the name Mimulus therefore takes on tremendous biological significance and is recognizable not only by botanists, but also by zoologists, horticulturalists, naturalists, and members of the biomedical community. Names associated with a taxonomic group of this prominence should have substantial inertia, and disruptive name changes should be avoided. As members of the Mimulus community, we advocate retaining the genus name Mimulus to describe all monkeyflowers. This is despite recent nomenclature changes that have led to a renaming of most monkeyflower species to other genera.Additional co-authors: Jannice Friedman, Dena L Grossenbacher, Liza M Holeski, Christopher T Ivey, Kathleen M Kay, Vanessa A Koelling, Nicholas J Kooyers, Courtney J Murren, Christopher D Muir, Thomas C Nelson, Megan L Peterson, Joshua R Puzey, Michael C Rotter, Jeffrey R Seemann, Jason P Sexton, Seema N Sheth, Matthew A Streisfeld, Andrea L Sweigart, Alex D Twyford, John H Willis, Kevin M Wright, Carrie A Wu, Yao-Wu Yua

    Malaria infection prevalence and sensitivity of reactive case detection in Zanzibar

    No full text
    Reactive case detection (RCD) is a commonly used strategy for malaria surveillance and response in elimination settings. Many approaches to RCD assume detectable infections are clustered within and around homes of passively detected cases (index households), which has been evaluated in a number of settings with disparate results.; Household questionnaires and diagnostic testing were conducted following RCD investigations in Zanzibar, Tanzania, including the index household and up to 9 additional neighboring households.; Of 12,487 participants tested by malaria rapid diagnostic test (RDT), 3·2% of those residing in index households and 0·4% of those residing in non-index households tested positive (OR = 8·4; 95%CI: 5·7, 12·5). Of 6,281 participants tested by quantitative polymerase chain reaction (qPCR), 8·4% of those residing in index households and 1·3% of those residing in non-index households tested positive (OR = 7·1; 95%CI: 6·1, 10·9). Within households of index cases defined as imported, odds of qPCR-positivity amongst members reporting recent travel were 1·4 times higher than among those without travel history (95%CI: 0·2, 4·4). Amongst non-index households, odds of qPCR-detectable infection were no different between households located within 50 m of the index household as compared with those located farther away (OR = 0·8, 95%CI: 0·5, 1·4). Sensitivity of RDT to detect qPCR-detectable infections was 34% (95%CI: 26·4, 42·3).; Malaria prevalence in index households in Zanzibar is much higher than in non-index households, in which prevalence is very low. Travelers represent a high-risk population. Low sensitivity of RDTs due to a high prevalence of low-density infections results in an RCD system missing a large proportion of the parasite reservoir

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore