2,710 research outputs found

    A cross sectional study of water quality from dental unit water lines in dental practices in the West of Scotland

    Get PDF
    OBJECTIVE: To determine the microbiological quality of water from dental units in a general practice setting and current practice for disinfection of units. DESIGN: A cross-sectional study of the water quality from 40 dental units in 39 general practices and a questionnaire of the disinfection protocols used in those practices. SETTING: NHS practices in primarydental care. SUBJECTS: Thirty-nine general practices from the West of Scotland. METHODS: Water samples were collected on two separate occasions from dental units and analysed for microbiological quality by the total viable count (TVC) method. Water specimens were collected from the triple syringe, high speed outlet, cup filler and surgery tap. Each participating practitioner was asked to complete a questionnaire. Results Microbial contamination was highest from the high speed outlet followed by the triple syringe and cup filler. On average, the TVC counts from the high speed water lines at 37 degrees C and for the high speed lines, triple syringe and cup filler at 22 degrees C were significantly higher than that from the control tap water specimens. The study included units from 11 different manufacturers with ages ranging from under one year to over eight years. The age of the dental unit analysed did not appear to influence the level of microbial contamination. Five of the practices surveyed used disinfectants to clean the dental units but these had no significant effect on the microbiological quality of the water. The majority of dental units (25 out of 40) were never flushed with water between patients. A number of different non-sterile irrigants were used for surgical procedures. CONCLUSION: The microbiological quality of water from dental units in general dental practice is poor compared with that from drinking water sources. Suitable sterile irrigants should be used for surgical procedures in dental practice. Further work is required for pragmatic decontamination regimens of dental unit water lines in a general dental practice setting

    Duality and replicas for a unitary matrix model

    Get PDF
    In a generalized Airy matrix model, a power pp replaces the cubic term of the Airy model introduced by Kontsevich. The parameter pp corresponds to Witten's spin index in the theory of intersection numbers of moduli space of curves. A continuation in pp down to p=2p= -2 yields a well studied unitary matrix model, which exhibits two different phases in the weak and strong coupling regions, with a third order critical point in-between. The application of duality and replica to the pp-th Airy model allows one to recover both the weak and strong phases of the unitary model, and to establish some new results for these expansions. Therefore the unitary model is also indirectly a generating function for intersection numbers.Comment: 18 page, add referece

    Evaluation of the efficacy of Alpron disinfectant for dental unit water lines

    Get PDF
    AIMS: To assess the efficacy of a disinfectant, Alpron, for controlling microbial contamination within dental unit water lines. METHODS: The microbiological quality of water emerging from the triple syringe, high speed handpiece, cup filler and surgery hand wash basin from six dental units was assessed for microbiological total viable counts at 22 degrees C and 37 degrees C before and after treatment with Alpron solutions. RESULTS: The study found that the use of Alpron disinfectant solutions could reduce microbial counts in dental unit water lines to similar levels for drinking water. This effect was maintained in all units for up to six weeks following one course of treatment. In four out of six units the low microbial counts were maintained for 13 weeks. CONCLUSIONS: Disinfectants may have a short term role to play in controlling microbial contamination of dental unit water lines to drinking water quality. However, in the longer term attention must be paid to redesigning dental units to discourage the build up of microbial biofilms

    High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT

    Get PDF
    Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS_5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant "Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives alpha between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L larger than exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d=10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.Comment: 25 pages, 3 eps figure

    Corner contributions to holographic entanglement entropy

    Full text link
    The entanglement entropy of three-dimensional conformal field theories contains a universal contribution coming from corners in the entangling surface. We study these contributions in a holographic framework and, in particular, we consider the effects of higher curvature interactions in the bulk gravity theory. We find that for all of our holographic models, the corner contribution is only modified by an overall factor but the functional dependence on the opening angle is not modified by the new gravitational interactions. We also compare the dependence of the corner term on the new gravitational couplings to that for a number of other physical quantities, and we show that the ratio of the corner contribution over the central charge appearing in the two-point function of the stress tensor is a universal function for all of the holographic theories studied here. Comparing this holographic result to the analogous functions for free CFT's, we find fairly good agreement across the full range of the opening angle. However, there is a precise match in the limit where the entangling surface becomes smooth, i.e., the angle approaches π\pi, and we conjecture the corresponding ratio is a universal constant for all three-dimensional conformal field theories. In this paper, we expand on the holographic calculations in our previous letter arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match published version, typos fixe

    Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories

    Full text link
    We carry out a gauge invariant analysis of certain perturbations of D2D-2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in DD dimensions, a generalization of that recently found in arXiv:0709.0471[hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.Comment: A new reference added

    Reggeon exchange from gauge/gravity duality

    Get PDF
    We perform the analysis of quark-antiquark Reggeon exchange in meson-meson scattering, in the framework of the gauge/gravity correspondence in a confining background. On the gauge theory side, Reggeon exchange is described as quark-antiquark exchange in the t channel between fast projectiles. The corresponding amplitude is represented in terms of Wilson loops running along the trajectories of the constituent quarks and antiquarks. The paths of the exchanged fermions are integrated over, while the "spectator" fermions are dealt with in an eikonal approximation. On the gravity side, we follow a previously proposed approach, and we evaluate the Wilson-loop expectation value by making use of gauge/gravity duality for a generic confining gauge theory. The amplitude is obtained in a saddle-point approximation through the determination near the confining horizon of a Euclidean "minimal surface with floating boundaries", i.e., by fixing the trajectories of the exchanged quark and antiquark by means of a minimisation procedure, which involves both area and length terms. After discussing, as a warm-up exercise, a simpler problem on a plane involving a soap film with floating boundaries, we solve the variational problem relevant to Reggeon exchange, in which the basic geometry is that of a helicoid. A compact expression for the Reggeon-exchange amplitude, including the effects of a small fermion mass, is then obtained through analytic continuation from Euclidean to Minkowski space-time. We find in particular a linear Regge trajectory, corresponding to a Regge-pole singularity supplemented by a logarithmic cut induced by the non-zero quark mass. The analytic continuation leads also to companion contributions, corresponding to the convolution of the same Reggeon-exchange amplitude with multiple elastic rescattering interactions between the colliding mesons.Comment: 60+1 pages, 14 figure

    Modulated Instability in Five-Dimensional U(1) Charged AdS Black Hole with R**2-term

    Full text link
    We study the effect of R**2 term to the modulated instability in the U(1) charged black hole in five-dimensional Anti-de Sitter space-time. We consider the first-order corrections of R**2 term to the background and the linear order perturbations in the equations of motion. From the analysis, we clarify the effect of R**2 term in the modulated instability, and conclude that fluctuations are stable in the whole bulk in the range of values the coefficient of R**2 term can take.Comment: 19 pages, 1 figures; (v4) Published version in JHE

    Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring

    Full text link
    We argue that the Weyl coordinates and the rod-structure employed to construct static axisymmetric solutions in higher dimensional Einstein gravity can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete application of the general formalism, we present numerical evidence for the existence of static black ring solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. They approach asymptotically the Minkowski background and are supported against collapse by a conical singularity in the form of a disk. An interesting feature of these solutions is that the Gauss-Bonnet term reduces the conical excess of the static black rings. Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the static black rings exist up to a maximal value of the Gauss-Bonnet coupling constant α\alpha'. Moreover, in the limit of large ring radius, the suitably rescaled black ring maximal value of α\alpha' and the black string maximal value of α\alpha' agree.Comment: 43 pages, 14 figure

    Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory

    Full text link
    We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. These black holes are asymptotically flat, and possess a regular horizon of spherical topology and two equal-magnitude angular momenta associated with two distinct planes of rotation. The action and global charges of the solutions are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory. We discuss the general properties of these black holes and study their dependence on the Gauss-Bonnet coupling constant α\alpha. We argue that most of the properties of the configurations are not affected by the higher derivative terms. For fixed α\alpha the set of black hole solutions terminates at an extremal black hole with a regular horizon, where the Hawking temperature vanishes and the angular momenta attain their extremal values. The domain of existence of regular black hole solutions is studied. The near horizon geometry of the extremal solutions is determined by employing the entropy function formalism.Comment: 25 pages, 7 figure
    corecore