972 research outputs found

    The AdS/CFT Correspondence and a New Positive Energy Conjecture for General Relativity

    Get PDF
    We examine the AdS/CFT correspondence when the gauge theory is considered on a compactified space with supersymmetry breaking boundary conditions. We find that the corresponding supergravity solution has a negative energy, in agreement with the expected negative Casimir energy in the field theory. Stability of the gauge theory would imply that this supergravity solution has minimum energy among all solutions with the same boundary conditions. Hence we are lead to conjecture a new positive energy theorem for asymptotically locally Anti-de Sitter spacetimes. We show that the candidate minimum energy solution is stable against all quadratic fluctuations of the metric.Comment: 25 pages, harvma

    Imprints of Short Distance Physics On Inflationary Cosmology

    Get PDF
    We analyze the impact of certain modifications to short distance physics on the inflationary perturbation spectrum. For the specific case of power-law inflation, we find distinctive -- and possibly observable -- effects on the spectrum of density perturbations.Comment: Revtex 4, 3 eps figs, 4 page

    Negative Energy Density in Calabi-Yau Compactifications

    Full text link
    We show that a large class of supersymmetric compactifications, including all simply connected Calabi-Yau and G_2 manifolds, have classical configurations with negative energy density as seen from four dimensions. In fact, the energy density can be arbitrarily negative -- it is unbounded from below. Nevertheless, positive energy theorems show that the total ADM energy remains positive. Physical consequences of the negative energy density include new thermal instabilities, and possible violations of cosmic censorship.Comment: 25 pages, v2: few clarifying comments and reference adde

    Vacuum Structure of Two-Dimensional Gauge Theories on the Light Front

    Get PDF
    We discuss the problem of vacuum structure in light-front field theory in the context of (1+1)-dimensional gauge theories. We begin by reviewing the known light-front solution of the Schwinger model, highlighting the issues that are relevant for reproducing the θ\theta-structure of the vacuum. The most important of these are the need to introduce degrees of freedom initialized on two different null planes, the proper incorporation of gauge field zero modes when periodicity conditions are used to regulate the infrared, and the importance of carefully regulating singular operator products in a gauge-invariant way. We then consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z2/Z_2, which possesses nontrivial topology. In particular, there are two topological sectors and the physical vacuum state has a structure analogous to a θ\theta vacuum. We formulate the model using periodicity conditions in x±x^\pm for infrared regulation, and consider a solution in which the gauge field zero mode is treated as a constrained operator. We obtain the expected Z2Z_2 vacuum structure, and verify that the discrete vacuum angle which enters has no effect on the spectrum of the theory. We then calculate the chiral condensate, which is sensitive to the vacuum structure. The result is nonzero, but inversely proportional to the periodicity length, a situation which is familiar from the Schwinger model. The origin of this behavior is discussed.Comment: 29 pages, uses RevTeX. Improved discussion of the physical subspace generally and the vacuum states in particular. Basic conclusions are unchanged, but some specific results are modifie

    Some Remarks on Theories with Large Compact Dimensions and TeV-Scale Quantum Gravity

    Full text link
    We comment on some implications of theories with large compactification radii and TeV-scale quantum gravity. These include the behavior of high-energy gravitational scattering cross sections and consequences for ultra-high-energy cosmic rays and neutrino scattering, the question of how to generate naturally light neutrino masses, the issue of quark-lepton unification, the equivalence principle, and the cosmological constant.Comment: 28 pages, Late

    CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.

    Get PDF
    CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL

    (Re)constructing Dimensions

    Get PDF
    Compactifying a higher-dimensional theory defined in R^{1,3+n} on an n-dimensional manifold {\cal M} results in a spectrum of four-dimensional (bosonic) fields with masses m^2_i = \lambda_i, where - \lambda_i are the eigenvalues of the Laplacian on the compact manifold. The question we address in this paper is the inverse: given the masses of the Kaluza-Klein fields in four dimensions, what can we say about the size and shape (i.e. the topology and the metric) of the compact manifold? We present some examples of isospectral manifolds (i.e., different manifolds which give rise to the same Kaluza-Klein mass spectrum). Some of these examples are Ricci-flat, complex and K\"{a}hler and so they are isospectral backgrounds for string theory. Utilizing results from finite spectral geometry, we also discuss the accuracy of reconstructing the properties of the compact manifold (e.g., its dimension, volume, and curvature etc) from measuring the masses of only a finite number of Kaluza-Klein modes.Comment: 23 pages, 3 figures, 2 references adde

    Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory

    Get PDF
    We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave functions, including average multiplicities and average momenta of constituents, structure functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data in the tables of v

    Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV

    Full text link
    Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.

    Determination of alpha_s using Jet Rates at LEP with the OPAL detector

    Full text link
    Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.) \.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.
    • …
    corecore