57 research outputs found

    THE INTRODUCED SABELLID POLYCHAETE TEREBRASABELLA HETEROUNCINATA IN CALIFORNIA: TRANSMISSION, METHODS OF CONTROL AND SURVEY FOR PRESENCE IN NATIVE GASTROPOD POPULATIONS

    Get PDF
    The sabellid polychaete Terebrasabella heterouncinata (Fitzhugh & Rouse 1999) has a unique life history in which larvae settle on the edge of gastropod shells and rely on shell deposition to create a tube with an opening to the exterior. This worm was accidentally imported to California, USA on abalone from South Africa in the 1980s and spread with abalone shipments to most culture facilities and some public aquaria throughout the state. Its ability to infest California's native gastropods has sparked concern regarding potential establishment in intertidal habitats adjacent to facilities that held sabellid-positive abalone. We examined the ability of T. heterouncinata to transmit between individual turban snails, Tegula funebralis. We found that transmission between T.funebralis did occur, but at a significantly slower rate than that between red abalone Haliotis rufescens. During 2002 to 2006 native gastropods (turban snails and limpets) were collected at most sabellid-exposed sites and no T. heterouncinata were detected; it thus appears that this species has not become established in California. Freshwater exposure was examined as a method to kill T. heterouncinala in shell fragments that may remain after abalone are removed from production or display units. Freshwater immersion for up to 8 hours but not 16 or 32 h resulted in survival of adults and/or larvae resident in brood chambers. In a similar study, motile T. heterouncinata larvae were found to survive up to 32 see of freshwater exposure, whereas none survived a 64-sec exposure. These data can be used by abalone culture and display facilities to establish reliable sanitization procedures to prevent T. heterouncinata transmission or reinfestation

    Multiple and Long-Term Effects of an Introduced Predatory Crab

    Get PDF
    Despite the importance of invasions, few studies have explored their long-term consequences in marine systems or examined multiple types of population-level effects. Initial effects, however, may not persist over longer time frames; effects have been shown to wane in freshwater systems. We combined 14 yr of field surveys (1993 to 2006) with manipulative experiments to examine the potential for multiple effects of a nonindigenous crab Carcinus maenas on the native shore crab Hemigrapsus oregonensis over time in central California. H. oregonensis abundance was negatively correlated with C. maenas abundance. However, H. oregonensis abundance rebounded to pre-invasion levels once C. maenas numbers declined. Other measured changes include a marked decrease in H. oregonensis body size and an increase in the proportion of H. oregonensis in the high intertidal zone since the arrival of C. maenas. These changes in body size and tidal distribution persisted nearly a decade beyond the peak abundance of C. maenas and after H. oregonensis numbers rebounded. Observed changes in the distribution of the H. oregonensis population correspond to shifts in C. maenas abundance, and experiments support a causal relationship. Stepwise regression suggests a complex and possibly nonlinear relationship between predictor variables and H. oregonensis size and distribution. Overall, our data indicate strong persistent effects on multiple attributes, with a lag in recovery with declining invader abundance, underscoring the potential for long-term effects that are decoupled from year-to-year invasion dynamics

    The Impacts of a Nonindigenous Marine Predator in a California Bay

    Get PDF
    Coastal marine ecosystems worldwide are being altered rapidly by the invasion of nonindigenous species. Unlike terrestrial and freshwater systems, the impacts of an invading species have never been quantified on multiple trophic levels for a marine food web. We measured the impact of the nonindigenous green crab, Carcinus maenas, on a coastal marine food web in central California and found that this predator exerted strong “top-down” control, significantly reducing the abundances of several of the 20 invertebrate species monitored over a 9-yr period. Densities of native clams, Nutricola tantilla and Nutricola confusa, and native shore crabs, Hemigrapsus oregonensis, showed 5-fold to 10-fold declines within 3 yr of the arrival of green crabs. Field and laboratory experiments indicated that green crab predation caused these declines. We also tested for indirect responses of invertebrates and vertebrates to green crab predation. There were significant increases in the abundances of two polychaete taxa, Lumbrineris sp. and Exogene sp., and tube-building tanaid crustaceans, Leptochelia dubia, most likely due to the removal of co-occurring green crab prey. However, we observed no changes in shorebird abundances (13 species) over a 9-yr period suggesting that green crabs have had no “bottom-up” effect on shorebirds, which subsist on benthic invertebrate prey. We predict that such bottom-up control will occur as the local effects and geographic range of green crabs increase. The 2-yr temporal scale of direct and indirect responses of the invertebrates in this low energy, soft-substrate system was also in agreement with the results of perturbation experiments by others on rocky shores, which showed that most direct and indirect responses also occur within a 2-yr time frame

    Integrated Assessment of Biological Invasions

    Get PDF
    As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species—a vine, a marine mussel, and a freshwater crayfish—under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions

    Global change, global trade, and the next wave of plant invasions

    Get PDF
    Copyright © 2012 Ecological Society of AmericaMany non-native plants in the US have become problematic invaders of native and managed ecosystems, but a new generation of invasive species may be at our doorstep. Here, we review trends in the horticultural trade and invasion patterns of previously introduced species and show that novel species introductions from emerging horticultural trade partners are likely to rapidly increase invasion risk. At the same time, climate change and water restrictions are increasing demand for new types of species adapted to warm and dry environments. This confluence of forces could expose the US to a range of new invasive species, including many from tropical and semiarid Africa as well as the Middle East. Risk assessment strategies have proven successful elsewhere at identifying and preventing invasions, although some modifications are needed to address emerging threats. Now is the time to implement horticulture import screening measures to prevent this new wave of plant invasions.National Science Foundatio

    Will extreme climatic events facilitate biological invasions?

    Get PDF
    Copyright © 2012 Ecological Society of AmericaExtreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning.National Science Foundatio

    Will Extreme Climatic Events Facilitate Biological Invasions?

    Get PDF
    Extreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning

    Culturing for conservation: the need for timely investments in reef aquaculture

    Get PDF
    Temperate oyster and tropical coral reefs are analogous systems that create habitat for economically, ecologically, and culturally important species, and they provide countless ecosystem services to human coastal communities. Globally, reefs are imperiled by multiple anthropogenic stressors, particularly climate impacts. Using aquaculture to support conservation goals - known as conservation aquaculture - is a relatively new approach for many reef building species, but it shows great promise for promoting species recovery and bolstering resilience to stressors. Concerns about aquaculture-associated risks, both known and potential, have often restricted the implementation of this tool to an emergency intervention following dramatic declines on reefs, when species or systems were unlikely to recover. Here, we combine expertise from coral and oyster reef ecosystems to consider the role of aquaculture as a conservation intervention for reefs, and provide recommendations for its timely development and targeted implementation. We highlight the importance of evaluating reef systems - alongside local stakeholders and Indigenous communities - to determine where and when the benefits of using aquaculture are most likely to outweigh the risks. We spotlight the importance of proactive monitoring to detect reef population declines, and the value of early aquaculture interventions to increase efficacy. Novel aquaculture approaches and technologies specifically designed for reef builders are considered, including techniques for building complex, multi-generational and multi-species reefs. We address the need for scaling up aquaculture-assisted reef recovery, particularly of corals, using high volume methods like those that have been successfully employed for oysters. We also recommend the immediate assessment and development of techniques to increase climate resilience of reef builders and we identify the challenges and trade-offs of these approaches. We highlight the use of proof-of-concept projects to test these promising methods, and we advise tracking of all interventions over time to determine their long-term efficacy. Finally, we outline opportunities to leverage novel partnerships among conservation, industry, and community interests that utilize aquaculture to facilitate the conservation of reefs. Developing conservation aquaculture approaches now is critical to position managers, scientists, and restoration practitioners to implement this intervention in timely and effective ways to support resilient reef and human communities worldwide

    Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus

    Get PDF
    In 2014 a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 years. We do not agree with the arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of taxonomy and of formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina
    • …
    corecore