863 research outputs found

    Combustion detector

    Get PDF
    A device has been developed for generating a rapid response signal upon the radiation-emitting combustion reaction of certain gases in order to provide a means for the detection and identification of such reaction and concurrently discriminate against spurious signals. This combustion might be the first stage of a coal mine explosion process, and thereby this device could provide a warning of the impending explosion in time to initiate quenching action. This device has the capability of distinguishing between the light emitted from a combustion reaction and the light emitted by miners' lamps, electric lamps, welding sparks or other spurious events so that the quenching mechanism is triggered only when an explosion-initiating combustion occurs

    Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches

    Get PDF
    Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products

    Energetics of a sudden stratospheric warming simulated with a three-dimensional, spectral, quasi-geostrophic model

    Get PDF
    The energetics of a three dimensional, quasi-geostrophic simulation of a sudden stratospheric warming which developed spontaneously during an annual cycle simulation are described. Daily values of the stratospheric temperatures, zonal winds, heating rates, energies, and energy conversions are discussed and compared with those for observed warmings. It is shown that, like observed warmings, the simulated warming was preceded by an increased vertical flux of eddy kinetic energy from the troposphere and the polar heating resulted because of the strong convergence of the horizontal, eddy heat flux which was only partially balanced by adiabatic and diabatic cooling. There is a significant similarity between the energetics of the simulated and observed warmings. In addition, the warming was spontaneous and the model did not develop a major warming in each winter of the simulation. These facts suggest that this model may be useful for studying not only the warming process but also the conditions that favor its development

    Deleterious Effect on Astronaut Capability of Vestibulo- Ocular Disturbance during Spacecraft Roll Acceleration

    Get PDF
    This study discusses the physiological limitations of the human and his susceptibility to error when subjected to extended and accelerated spacecraft rolling. The context for discussion is provided by the Gemini VIII spaceflight emergency of uncontrolled and accelerated rolling which caused the premature abort of the mission. Data from this flight imply that astronaut performance was impaired due to vestibulo-ocular disturbance. Five deleterious effects are attributed to spacecraft roll acceleration: disorientation, dizziness, impaired vision, nausea, and panic. Recommendations for astronaut selection and conditioning as well as spacecraft design are proposed to minimize these effects of accelerated rolling

    The Colorado School of Mines Nevada geothermal study

    Get PDF
    Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully

    The development of the DAST I remotely piloted research vehicle for flight testing an active flutter suppression control system

    Get PDF
    The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses

    Transport processes in the middle atmosphere: Reflections after MAP

    Get PDF
    The Middle Atmosphere Program (MAP) has provided a focus for considerable research on atmospherical radiative, chemical, and dynamical processes and the mutual coupling among these processes. In particular, major advances have occurred in the understanding of constituent transport as a result of near-global measurements obtained during MAP from several satellite based instruments (e.g., LIMS, SAMS, SAGE, and SSU among others). Using selected portions of these data, the development is reviewed of progress in understanding transport processes with special emphasis on dynamically active periods. Examples are presented which demonstrate coupling between chemistry and dynamics. In addition to the constituent data, the use is reviewed of Ertel's potential vorticity, inferred from satellite temperature data, as a diagnostic for interpreting transport phenomena. Finally, the use is briefly illustrated of 3-D model simulations, in conjunction with the satellite data, for providing additional insight into fundamental transport mechanisms

    Fibroblast Growth Factor 22 Is Not Essential for Skin Development and Repair but Plays a Role in Tumorigenesis

    Get PDF
    PMCID: PMC3380851This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Stratospheric dynamics and transport studies

    Get PDF
    A three dimensional General Circulation Model/Transport Model is used to simulate stratospheric circulation and constituent distributions. Model simulations are analyzed to interpret radiative, chemical, and dynamical processes and their mutual interactions. Concurrent complementary studies are conducted using both global satellite data and other appropriate data. Comparisons of model simulations and data analysis studies are used to aid in understanding stratospheric dynamics and transport processes and to assess the validity of current theory and models

    Upper Atmosphere Research Satellite Validation Workshop III: Temperature and Constituents Validation

    Get PDF
    The Upper Atmosphere Research Satellite (UARS) was launched in September 1991. Since that time data have been retrieved continuously from the various instruments on the UARS spacecraft. These data have been processed by the respective instrument science teams and subsequently archived in the UARS Central Data Handling Facility (CDHF) at the NASA Goddard Space Flight Center, Greenbelt, Maryland. This report contains the proceedings from one of the three workshops held to evaluate the progress in validating UARS constituents and temperature data and to document the quality of that data. The first workshop was held in Oxford, England, in March 1992, five and one-half months after UARS launch. The second workshop was held in Boulder, Colorado in October 1992. Since launch, the various data have undergone numerous revisions. In many instances these revisions are a result of data problems identified during the validation workshops. Thus, the formal validation effort is a continually ongoing process
    • …
    corecore