29 research outputs found

    Assessing the greenhouse gas emissions from poultry fat biodiesel

    Get PDF
    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the 'original user' of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel rather than petrochemical diesel. Given that it is the production of the substitute for the poultry fat which mainly eliminates the benefit from using poultry fat for biodiesel, it is argued that whenever assessing the greenhouse gas emissions from biodiesel made from by-products (such as rendered animal fats, used cooking oil, etc.) it is very important to include the oil's alternative use in the assessment

    Longitudinal and contemporaneous manganese exposure in apartheid-era South Africa: Implications for the past and future

    Get PDF
    Manganese is a potent environmental toxin, with significant effects on human health. Manganese exposure is of particular concern in South Africa where in the last decade, lead in gasoline has been replaced by methylcyclopentadienyl manganese tricarbonyl (MMT). We investigated recent historical levels of manganese exposure in urban Gauteng, South Africa prior to the introduction of MMT in order to generate heretofore non-existent longitudinal public health data on manganese exposure in urban South Africans. Cortical bone manganese concentration was measured by inductively coupled plasma mass spectrometer in 211 deceased adults with skeletal material from a fully identified archived tissue collection at the University of Pretoria, South Africa. All tissues came from individuals who lived and died in urban Gauteng (Transvaal), between 1958 and 1998. Median Mn concentration within the sampled tissues was 0.3ÎĽgg, which is within reported range for bone manganese concentration in non-occupationally exposed populations and significantly below that reported in individuals environmentally exposed to MMT. No significant differences were seen in bone Mn between men and women or in individuals of different ethnicity, which further suggests environmental, as opposed to occupational exposure. There were no significant temporal or geographic differences in bone Mn. The results suggest that Mn exposure was low and uniformly distributed across the whole population prior to the introduction of MMT as a gasoline additive. In addition, should manganese exposure follow the same patterns as vehicle-emitted lead, a clear pattern of exposure will emerge with individuals in the urban core facing the greatest manganese exposure

    Hydrogeologic framework and geochemistry of the Edwards aquifer saline-water zone, south-central Texas

    No full text
    The Edwards aquifer supplies drinking water for more than 1 million people in south-central Texas. The saline-water zone of the Edwards aquifer extends from the downdip limit of freshwater to the southern and eastern edge of the Stuart City Formation. Water samples from 16 wells in the Edwards aquifer saline-water zone were collected during July–September 1990 and analyzed for major and minor dissolved constituents, selected stable isotopes, and radioisotopes. These data, supplemental data from an extensive water-quality data base, and data from other previous studies were interpreted to clarify the understanding of the saline-waterzone geochemistry. Most of the isotope and geochemical data indicate at least two distinct hydrological and geochemical regimes in the saline-water zone of the Edwards aquifer. On the basis of hydrogen and oxygen isotopes and radiocarbon data, the shallower updip regime is predominantly meteoric water that has been recharged probably from the freshwater zone within recent geologic time (less than tens of thousands of years). Also, on the basis of hydrogen and oxygen isotope data, water in the hydrologically stagnant regime (downdip) has been thermally altered in reactions with the carbonate rocks of the zone. The deeper water probably is much older than water in the shallow zone and is nearly stagnant relative to that in the shallow zone. The geochemical grouping observed in the wellwater data from well samples in the saline-water zone indicates that the zone is hydrologically compartmentalized, in part because of faults that function as barriers to downdip flow of recharge water. These fault barriers also probably impede updip flow. Flow compartmentalization and the resulting disparity in geochemistry between the two regimes indicate that updip movement of substantial amounts of saline water toward the freshwater zone is unlikely. Estimated in-place temperature of the samples collected indicates an increase with depth and (or) distance from the downdip limit of freshwater. The pH of

    Hydrogeologic factors that affect the flowpath of water in selected zones of the Edwards Aquifer, San Antonio region, Texas /

    No full text
    Three plates on 3 folded leaves in pocket.Shipping list no.: 97-0123-P.Includes bibliographical references (p. 71-73).Mode of access: Internet
    corecore