49 research outputs found

    Heavy baryon properties with NLO accuracy in perturbative QCD

    Full text link
    We present an analysis of the static properties of heavy baryons at next-to-leading order in the perurbative expansion of QCD. We obtain analytical next-to-leading order three-loop results for the two-point correlators of baryonic currents with one finite mass quark field for a variety of quantum numbers of the baryonic currents. We consider both the massless limit and the HQET limit of the correlator as special cases of the general finite mass formula and find agreement with previous results. We present closed form expressions for the moments of the spectral density. We determine the residues of physical baryon states using sum rule techniques.Comment: 43 pages in LaTeX, including 3 figure

    Analysis of Ωb(bss)\Omega_b^-(bss) and Ωc0(css)\Omega_c^0(css) with QCD sum rules

    Full text link
    In this article, we calculate the masses and the pole residues of the 1/2+{1/2}^+ heavy baryons Ωc0(css)\Omega_c^0(css) and Ωb(bss)\Omega_b^-(bss) with the QCD sum rules. The numerical values MΩc0=(2.72±0.18)GeVM_{\Omega_c^0}=(2.72\pm0.18) \rm{GeV} (or MΩc0=(2.71±0.18)GeVM_{\Omega_c^0}=(2.71\pm0.18) \rm{GeV}) and MΩb=(6.13±0.12)GeVM_{\Omega_b^-}=(6.13\pm0.12) \rm{GeV} (or MΩb=(6.18±0.13)GeVM_{\Omega_b^-}=(6.18\pm0.13) \rm{GeV}) are in good agreement with the experimental data.Comment: 18 pages, 18 figures, slight revisio

    Perturbative relations between e+ee^+e^- annihilation and τ\tau decay observables including resummation effects

    Full text link
    By exploiting the analyticity properties of the two-point current-current correlator we obtain numerical predictions for the e+ee^+e^- moments in terms of the τ\tau decay rate. We perform a partial resummation of the pertinent perturbative series expansion by solving the renormalization group equation for Adler's function. Our predictions are renormalization scheme independent but depend on the order of the perturbative β\beta-function expansion. The analysis involves the unknown five-loop coefficient k3k_3 for which we give some new estimates.Comment: 10 pages, LaTeX, 2 postscript figure

    On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order

    Full text link
    We review recently developed new powerful techniques to compute a class of Feynman diagrams at any loop order, known as sunrise-type diagrams. These sunrise-type topologies have many important applications in many different fields of physics and we believe it to be timely to discuss their evaluation from a unified point of view. The method is based on the analysis of the diagrams directly in configuration space which, in the case of the sunrise-type diagrams and diagrams related to them, leads to enormous simplifications as compared to the traditional evaluation of loops in momentum space. We present explicit formulae for their analytical evaluation for arbitrary mass configurations and arbitrary dimensions at any loop order. We discuss several limiting cases of their kinematical regimes which are e.g. relevant for applications in HQET and NRQCD.Comment: 100 pages, 16 eps-figures include

    Strong coupling constant from τ\tau decay within renormalization scheme invariant treatment

    Get PDF
    We extract a numerical value for the strong coupling constant \alpha_s from the \tau-lepton decay rate into nonstrange particles. A new feature of our procedure is the explicit use of renormalization scheme invariance in analytical form in order to perform the actual analysis in a particular renormalization scheme. For the reference coupling constant in the \MSsch-scheme we obtain \alpha_s(M_\tau)= 0.3184 \pm 0.0060_{exp} which corresponds to \al_s(M_Z)= 0.1184 \pm 0.0007_{exp} \pm 0.0006_{hq mass}. This new numerical value is smaller than the standard value from τ\tau-data quoted in the literature and is closer to \al_s(M_Z)-values obtained from high energy experiments.Comment: 8 page

    Electroweak and finite width corrections to top quark decays into transverse and longitudinal W W -bosons

    Get PDF
    We calculate the electroweak and finite width corrections to the decay of an unpolarized top quark into a bottom quark and a W W -gauge boson where the helicities of the W W are specified as longitudinal, transverse-plus and transverse-minus. Together with the O(αs) O(\alpha_s) corrections these corrections may become relevant for the determination of the mass of the top quark through angular decay measurements.Comment: 4 pages, 7 postscript figures adde

    A new technique for computing the spectral density of sunset-type diagrams: integral transformation in configuration space

    Get PDF
    We present a new method to investigate a class of diagrams which generalizes the sunset topology to any number of massive internal lines. Our attention is focused on the computation of the spectral density of these diagrams which is related to many-body phase space in DD dimensional space-time. The spectral density is determined by the inverse KK-transform of the product of propagators in configuration space. The inverse KK-transform reduces to the inverse Laplace transform in any odd number of space-time dimensions for which we present an explicit analytical result.Comment: 13 pages in LaTeX, one PostScript figure included in the tex

    Analytical continuation and resummed perturbation theory

    Get PDF
    A pattern of partial resummation of perturbation theory series inspired by analytical continuation is discussed for some physical observables.Comment: 9 pages, 2 tables, Late

    Finite calculation of divergent selfenergy diagrams

    Full text link
    Using dispersive techniques, it is possible to avoid ultraviolet divergences in the calculation of Feynman diagrams, making subsequent regularization of divergent diagrams unnecessary. We give a simple introduction to the most important features of such dispersive techniques in the framework of the so-called finite causal perturbation theory. The method is also applied to the 'divergent' general massive two-loop sunrise selfenergy diagram, where it leads directly to an analytic expression for the imaginary part of the diagram in accordance with the literature, whereas the real part can be obtained by a single integral dispersion relation. It is pointed out that dispersive methods have been known for decades and have been applied to several nontrivial Feynman diagram calculations.Comment: 15 pages, Latex, one figure, added reference

    On the evaluation of sunset-type Feynman diagrams

    Get PDF
    We introduce an efficient configuration space technique which allows one to compute a class of Feynman diagrams which generalize the scalar sunset topology to any number of massive internal lines. General tensor vertex structures and modifications of the propagators due to particle emission with vanishing momenta can be included with only a little change of the basic technique described for the scalar case. We discuss applications to the computation of nn-body phase space in DD-dimensional space-time. Substantial simplifications occur for odd space-time dimensions where the final results can be expressed in closed form through rational functions. We present explicit analytical formulas for three-dimensional space-time.Comment: 45 pages in LaTeX, 3 PostScript figures included in the tex
    corecore