15,181 research outputs found

    Heterotic free fermionic and symmetric toroidal orbifold models

    Get PDF
    Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for Z2xZ2 orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: We give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all Z2xZ2 orbifold geometries in six dimensions.Comment: 1+49 pages latex, minor revisions and references adde

    GRB afterglow light curves in the pre-Swift era - a statistical study

    Full text link
    We present the results of a systematic analysis of the world sample of optical/near-infrared afterglow light curves observed in the pre-Swift era by the end of 2004. After selecting the best observed 16 afterglows with well-sampled light curves that can be described by a Beuermann equation, we explore the parameter space of the light curve parameters and physical quantities related to them. In addition, we search for correlations between these parameters and the corresponding gamma-ray data, and we use our data set to look for a fine structure in the light curves.Comment: accepted for publication in ApJ; Version 2: minor changes, one figure adde

    Depletion-Isolation Effect in Vertical MOSFETs During the Transition From Partial to Fully Depleted Operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    On the origin dependence of multipole moments in electromagnetism

    Get PDF
    The standard description of material media in electromagnetism is based on multipoles. It is well known that these moments depend on the point of reference chosen, except for the lowest order. It is shown that this "origin dependence" is not unphysical as has been claimed in the literature but forms only part of the effect of moving the point of reference. When also the complementary part is taken into account then different points of reference lead to different but equivalent descriptions of the same physical reality. This is shown at the microscopic as well as at the macroscopic level. A similar interpretation is valid regarding the "origin dependence" of the reflection coefficients for reflection on a semi infinite medium. We show that the "transformation theory" which has been proposed to remedy this situation (and which is thus not needed) is unphysical since the transformation considered does not leave the boundary conditions invariant.Comment: 14 pages, 0 figure

    Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly

    No full text
    Inverse sphere shaped Ni arrays were fabricated by electrodeposition on Si through the guided self-assembly of polystyrene latex spheres in Si/SiO2 patterns. It is shown that the size commensurability of the etched tracks is critical for the long range ordering of the spheres. Moreover, noncommensurate guiding results in the reproducible periodic triangular distortion of the close packed self-assembly. Magnetoresistance measurements on the Ni arrays were performed showing room temperature anisotropic magnetoresistance of 0.85%. These results are promising for self-assembled patterned storage media and magnetoresistance devices

    Onsager approach to 1D solidification problem and its relation to phase field description

    Get PDF
    We give a general phenomenological description of the steady state 1D front propagation problem in two cases: the solidification of a pure material and the isothermal solidification of two component dilute alloys. The solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The isothermal solidification of two component alloys is controlled by the diffusion in the bulk and the interface kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior of velocity versus concentration which has previously been discussed by different approaches. We also discuss the relation of this Onsager approach to the thin interface limit of the phase field description.Comment: 5 pages, 1 figure, submitted to Physical Review

    Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    Full text link
    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the pQCD based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3-8 compared to elastic scatterings. The shear viscosity scales with the coupling as 1/(alpha_s^2\log(1/alpha_s)). For a constant coupling constant the shear viscosity to entropy density ratio has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.Comment: 17 pages, 5 figure

    Phase separation of binary fluids with dynamic temperature

    Full text link
    Phase separation of binary fluids quenched by contact with cold external walls is considered. Navier-Stokes, convection-diffusion, and energy equations are solved by lattice Boltzmann method coupled with finite-difference schemes. At high viscosity, different morphologies are observed by varying the thermal diffusivity. In the range of thermal diffusivities with domains growing parallel to the walls, temperature and phase separation fronts propagate towards the inner of the system with power-law behavior. At low viscosity hydrodynamics favors rounded shapes, and complex patterns with different lengthscales appear. Off-symmetrical systems behave similarly but with more ordered configurations.Comment: Accepted for publication in Phys. Rev. E, 11 figures, best quality figures available on reques

    Anomalies in field theories with extra dimensions

    Get PDF
    We give an overview of the issue of anomalies in field theories with extra dimensions. We start by reviewing in a pedagogical way the computation of the standard perturbative gauge and gravitational anomalies on non-compact spaces, using Fujikawa's approach and functional integral methods, and discuss the available mechanisms for their cancellation. We then generalize these analyses to the case of orbifold field theories with compact internal dimensions, emphasizing the new aspects related to the presence of orbifold singularities and discrete Wilson lines, and the new cancellation mechanisms that are becoming available. We conclude with a very brief discussion on global and parity anomalies.Comment: Review article written for Int.J.Mod.Phys. A, 63 pages; v2: mistake in subsection 4.3 corrected, some comments and references added, a few misprints fixe
    • 

    corecore