21,576 research outputs found
The vertical metal insulator semiconductor tunnel transistor: A proposed Fowler-Nordheim tunneling device
We propose a new field-effect transistor, the vertical metal insulator semiconductor tunnel transistor (VMISTT) which operates using gate modulation of the Fowler-Nordheim tunneling current through a metal insulator semiconductor (M-I-S) diode. The VMISTT has significant advantages over the metal-oxide-semiconductor field-effect transistor in device scaling. In order to allow room-temperature operation of the VMISTT, the tunnel oxide has to be optimized for the metal-to-insulator barrier height and the current-voltage characteristics. We have grown TiO2 layers as the tunnel insulator by oxidizing 7 and 10 nm thick Ti metal films vacuum-evaporated on silicon substrates, and characterized the films by current-voltage and capacitance-voltage techniques. The quality of the oxide films showed variations, depending on the oxidation temperatures in the range of 450-550 degrees C. Fowler-Nordheim tunneling was observed at low temperatures at bias voltage of 2 V and above and a barrier height of approximately 0.4 eV was calculated. Leakage currents present were due Schottky-barrier emission at room-temperature, and hopping at liquid nitrogen temperature
On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars
The Fourier Transform method is a popular tool to derive the rotational
velocities of stars from their spectral line profiles. However, its domain of
validity does not include line-profile variables with time-dependent profiles.
We investigate the performance of the method for such cases, by interpreting
the line-profile variations of spotted B stars, and of pulsating B tars, as if
their spectral lines were caused by uniform surface rotation along with
macroturbulence. We perform time-series analysis and harmonic least-squares
fitting of various line diagnostics and of the outcome of several
implementations of the Fourier Transform method. We find that the projected
rotational velocities derived from the Fourier Transform vary appreciably
during the pulsation cycle whenever the pulsational and rotational velocity
fields are of similar magnitude. The macroturbulent velocities derived while
ignoring the pulsations can vary with tens of km/s during the pulsation cycle.
The temporal behaviour of the deduced rotational and macroturbulent velocities
are in antiphase with each other. The rotational velocity is in phase with the
second moment of the line profiles. The application of the Fourier method to
stars with considerable pulsational line broadening may lead to an appreciable
spread in the values of the rotation velocity, and, by implication, of the
deduced value of the macroturbulence. These two quantities should therefore not
be derived from single snapshot spectra if the aim is to use them as a solid
diagnostic for the evaluation of stellar evolution models of slow to moderate
rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
Time-symmetric fluctuations in nonequilibrium systems
For nonequilibrium steady states, we identify observables whose fluctuations
satisfy a general symmetry and for which a new reciprocity relation can be
shown. Unlike the situation in recently discussed fluctuation theorems, these
observables are time-reversal symmetric. That is essential for exploiting the
fluctuation symmetry beyond linear response theory. Besides time-reversal, a
crucial role is played by the reversal of the driving fields, that further
resolves the space-time action. In particular, the time-symmetric part in the
space-time action determines second order effects of the nonequilibrium
driving.Comment: 4 page
Anisotropic Flow and Viscous Hydrodynamics
We report part of our recent work on viscous hydrodynamics with consistent
phase space distribution f(x,\p) for freeze out. We develop the gradient
expansion formalism based on kinetic theory, and with the constraints from the
comparison between hydrodynamics and kinetic theory, viscous corrections to
f(x,\p) can be consistently determined order by order. Then with the obtained
f(x,\p), second order viscous hydrodynamical calculations are carried out for
elliptic flow .Comment: 8 pages, 2 figures. Proceedings for the 28th Winter Workshop on
Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 -
14 Apr 201
Pitfall of the Detection Rate Optimized Bit Allocation within template protection and a remedy
One of the requirements of a biometric template protection system is that the protected template ideally should not leak any information about the biometric sample or its derivatives. In the literature, several proposed template protection techniques are based on binary vectors. Hence, they require the extraction of a binary representation from the real- valued biometric sample. In this work we focus on the Detection Rate Optimized Bit Allocation (DROBA) quantization scheme that extracts multiple bits per feature component while maximizing the overall detection rate. The allocation strategy has to be stored as auxiliary data for reuse in the verification phase and is considered as public. This implies that the auxiliary data should not leak any information about the extracted binary representation. Experiments in our work show that the original DROBA algorithm, as known in the literature, creates auxiliary data that leaks a significant amount of information. We show how an adversary is able to exploit this information and significantly increase its success rate on obtaining a false accept. Fortunately, the information leakage can be mitigated by restricting the allocation freedom of the DROBA algorithm. We propose a method based on population statistics and empirically illustrate its effectiveness. All the experiments are based on the MCYT fingerprint database using two different texture based feature extraction algorithms
Irreversible Thermodynamics in Multiscale Stochastic Dynamical Systems
This work extends the results of the recently developed theory of a rather
complete thermodynamic formalism for discrete-state, continuous-time Markov
processes with and without detailed balance. We aim at investigating the
question that whether and how the thermodynamic structure is invariant in a
multiscale stochastic system. That is, whether the relations between
thermodynamic functions of state and process variables remain unchanged when
the system is viewed at different time scales and resolutions. Our results show
that the dynamics on a fast time scale contribute an entropic term to the
"internal energy function", , for the slow dynamics. Based on the
conditional free energy , one can then treat the slow dynamics as if
the fast dynamics is nonexistent. Furthermore, we show that the free energy,
which characterizes the spontaneous organization in a system without detailed
balance, is invariant with or without the fast dynamics: The fast dynamics is
assumed to reach stationarity instantaneously on the slow time scale; they have
no effect on the system's free energy. The same can not be said for the entropy
and the internal energy, both of which contain the same contribution from the
fast dynamics. We also investigate the consequences of time-scale separation in
connection to the concepts of quasi-stationaryty and steady-adiabaticity
introduced in the phenomenological steady-state thermodynamics
Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions
We report on the direct observation of spin-exchanging interactions in a
two-orbital SU(N)-symmetric quantum gas of ytterbium in an optical lattice. The
two orbital states are represented by two different (meta-)stable electronic
configurations of fermionic Yb-173. A strong spin-exchange between particles in
the two separate orbitals is mediated by the contact interaction between atoms,
which we characterize by clock shift spectroscopy in a 3D optical lattice. We
find the system to be SU(N)-symmetric within our measurement precision and
characterize all relevant scattering channels for atom pairs in combinations of
the ground and the excited state. Elastic scattering between the orbitals is
dominated by the antisymmetric channel, which leads to the strong spin-exchange
coupling. The exchange process is directly observed, by characterizing the
dynamic equilibration of spin imbalances between two large ensembles in the two
orbital states, as well as indirectly in atom pairs via interaction shift
spectroscopy in a 3D lattice. The realization of a stable SU(N)-symmetric
two-orbital Hubbard Hamiltonian opens the route towards experimental quantum
simulation of condensed-matter models based on orbital interactions, such as
the Kondo lattice model.Comment: Correction: In the original version of this preprint the assignment
of states with symmetric electronic wavefunction (|eg+>) and with
antisymmetric electronic wavefunction (|eg->) to the observed spectral lines
was inverted. This has been corrected in the current version. The results of
the paper remain unchanged, with the exchange coupling being inverted to a
ferromagnetic exchang
- …