9 research outputs found

    Estimation and design with correlated observations

    Get PDF
    Several problems related to estimation, analysis and design with correlated observations are addressed. Under a one-dimensional covariance structure, asymptotic expressions of the bias of OLS residuals-based estimators for the covariance function and the variogram are presented. An estimator for the covariance function based on recursive residuals is introduced and compared with the classical OLS residuals-based estimator. A spatial approach to the analysis of experiments, where spatial dependence is assumed, is compared to the traditional one based on uncorrelated observations. The efficiency of incomplete block designs under second-order autoregressive error processes is studied and conditions for the universal optimality of balanced incomplete block designs are derived. Finally, results on the efficiency of first-order nearest-neighbor balanced designs are presented and its robustness against misspecification of a first-order autoregressive error process is discussed

    A comparison of variogram estimation with covariogram estimation

    No full text
    Consider teh class of intinsically stationary spatial processes, which contains the class of second-order stationary processes. A measure of spatial dependence in the larger class is the variogram, from which optimal linear predictors can be constructed. For processes that are second-order stationary, these optimal linear predictors can also be expressed in terms of the covariogram. Traditionally, time-series forecasting has used the covariogram, but use of the variogram allows more general processes to be considered. These measures of spatial dependence are often unknown and have to be estimated from the data. In this article, we show that estimation of the variogram has important advantages over estimation of the covariogram

    Bibliography of All Publications Cited

    No full text

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    No full text
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    No full text
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations
    corecore