94 research outputs found

    TAT-C: A Trade-Space Analysis Tool for Constellations

    Get PDF
    Under a changing technological and economic environment, there is growing interest in implementing future NASA Earth Science missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: Which type of constellations should be chosen? How many spacecraft should be included in the constellation? Which design has the best costrisk value? This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI and formulating Trade-space Search Requests for the Trade-space Search Iterator, which in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules generates multiple potential architectures and their associated characteristics. UI will include Graphical, Command Line and Application Programmer Interfaces to respond to the demands of various levels of users expertise. Science inputs are grouped into various mission concepts, satellite specifications, and payload specifications, while science outputs are grouped into several types of metrics - spatial, temporal, angular and radiometric. Orbit Coverage leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data that are passed to Reduction Metrics. Then, for each architecture design, Cost Risk will provide estimates of the cost and life cycle cost as well as technical and cost risk of the proposed mission. Additionally, the Knowledge Base module is a centralized store of structured data readable by humans and machines. It will support both TAT-C analysis when composing new mission concepts from existing model inputs, and TAT-C exploration when discovering new mission concepts by querying previous results

    Native amine dehydrogenases can catalyze the direct reduction of carbonyl compounds to alcohols in the absence of ammonia

    Get PDF
    Native amine dehydrogenases (nat-AmDHs) catalyze the (S)-stereoselective reductive amination of various ketones and aldehydes in the presence of high concentrations of ammonia. Based on the structure of CfusAmDH from Cystobacter fuscus complexed with Nicotinamide adenine dinucleotide phosphate (NADP+) and cyclohexylamine, we previously hypothesized a mechanism involving the attack at the electrophilic carbon of the carbonyl by ammonia followed by delivery of the hydride from the reduced nicotinamide cofactor on the re-face of the prochiral ketone. The direct reduction of carbonyl substrates into the corresponding alcohols requires a similar active site architecture and was previously reported as a minor side reaction of some native amine dehydrogenases and variants. Here we describe the ketoreductase (KRED) activity of a set of native amine dehydrogenases and variants, which proved to be significant in the absence of ammonia in the reaction medium but negligible in its presence. Conducting this study on a large set of substrates revealed the heterogeneity of this secondary ketoreductase activity, which was dependent upon the enzyme/substrate pairs considered. In silico docking experiments permitted the identification of some relationships between ketoreductase activity and the structural features of the enzymes. Kinetic studies of MsmeAmDH highlighted the superior performance of this native amine dehydrogenases as a ketoreductase but also its very low activity towards the reverse reaction of alcohol oxidation

    Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action

    Get PDF
    © 2018 Small, 1st and 2nd-order, headwater streams and ponds play essential roles in providing natural flood control, trapping sediments and contaminants, retaining nutrients, and maintaining biological diversity, which extend into downstream reaches, lakes and estuaries. However, the large geographic extent and high connectivity of these small water bodies with the surrounding terrestrial ecosystem makes them particularly vulnerable to growing land-use pressures and environmental change. The greatest pressure on the physical processes in these waters has been their extension and modification for agricultural and forestry drainage, resulting in highly modified discharge and temperature regimes that have implications for flood and drought control further downstream. The extensive length of the small stream network exposes rivers to a wide range of inputs, including nutrients, pesticides, heavy metals, sediment and emerging contaminants. Small water bodies have also been affected by invasions of non-native species, which along with the physical and chemical pressures, have affected most groups of organisms with consequent implications for the wider biodiversity within the catchment. Reducing the impacts and restoring the natural ecosystem function of these water bodies requires a three-tiered approach based on: restoration of channel hydromorphological dynamics; restoration and management of the riparian zone; and management of activities in the wider catchment that have both point-source and diffuse impacts. Such activities are expensive and so emphasis must be placed on integrated programmes that provide multiple benefits. Practical options need to be promoted through legislative regulation, financial incentives, markets for resource services and voluntary codes and actions

    IL10 and IL10 receptor gene variation and outcomes after unrelated and related hematopoietic cell transplantation.

    Get PDF
    BACKGROUND: Results of a previous study with human leukocyte antigen (HLA)-identical siblings showed individual and synergistic associations of single nucleotide polymorphisms in the promoter region of the recipient's IL10 gene and the donor's IL10 receptor beta (IL-10RB) gene with development of grades III-IV acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation. METHODS: In this study of 936 patients who had unrelated donors, genotypes of single nucleotide polymorphisms in the IL10 gene and the IL-10RB gene were evaluated as correlates with outcomes after transplantation. RESULTS: We found no statistically significant associations of polymorphisms at positions -3575, -2763, -1082, and -592 of the IL10 gene or codon 238 of the IL10RB gene with severe acute GVHD, extensive chronic GVHD or nonrelapse mortality after hematopoietic cell transplantation. Among HLA-matched unrelated pairs, the patient's IL10/-592 genotype and donor's IL10RB/c238 genotype showed trends suggesting individual and combined associations with grades III-IV acute GVHD similar to those observed among patients with HLA-identical sibling donors. CONCLUSIONS: Although genetic variation in IL10 pathway affects risk of acute GVHD and non-relapse mortality in HLA-identical sibling transplants, the current results indicate that genetic variation in the IL10 pathway does not significant affect these outcomes in unrelated donor transplants suggesting that the strength of the alloimmune response in the latter exceeds the anti-inflammatory activity of IL10

    The development and evaluation of a five-language multi-perspective standardised measure: clinical decision-making involvement and satisfaction (CDIS).

    Get PDF
    BACKGROUND: The aim of this study was to develop and evaluate a brief quantitative five-language measure of involvement and satisfaction in clinical decision-making (CDIS) - with versions for patients (CDIS-P) and staff (CDIS-S) - for use in mental health services. METHODS: An English CDIS was developed by reviewing existing measures, focus groups, semistructured interviews and piloting. Translations into Danish, German, Hungarian and Italian followed the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Task Force principles of good practice for translation and cultural adaptation. Psychometricevaluation involved testing the measure in secondary mental health services in Aalborg, Debrecen, London, Naples, Ulm and Zurich. RESULTS: After appraising 14 measures, the Control Preference Scale and Satisfaction With Decision-making English-language scales were modified and evaluated in interviews (n = 9), focus groups (n = 22) and piloting (n = 16). Translations were validated through focus groups (n = 38) and piloting (n = 61). A total of 443 service users and 403 paired staff completed CDIS. The Satisfaction sub-scale had internal consistency of 0.89 (0.86-0.89 after item-level deletion) for staff and 0.90 (0.87-0.90) for service users, both continuous and categorical (utility) versions were associated with symptomatology and both staff-rated and service userrated therapeutic alliance (showing convergent validity), and not with social disability (showing divergent validity), and satisfaction predicted staff-rated (OR 2.43, 95%CI 1.54- 3.83 continuous, OR 5.77, 95%CI 1.90-17.53 utility) and service user-rated (OR 2.21, 95%CI 1.51-3.23 continuous, OR 3.13, 95%CI 1.10-8.94 utility) decision implementation two months later. The Involvement sub-scale had appropriate distribution and no floor or ceiling effects, was associated with stage of recovery, functioning and quality of life (staff only) (showing convergent validity), and not with symptomatology or social disability (showing divergent validity), and staff-rated passive involvement by the service user predicted implementation (OR 3.55, 95%CI 1.53-8.24). Relationships remained after adjusting for clustering by staff. CONCLUSIONS: CDIS demonstrates adequate internal consistency, no evidence of item redundancy, appropriate distribution, and face, content, convergent, divergent and predictive validity. It can be recommended for research and clinical use. CDIS-P and CDIS-S in all 3 five languages can be downloaded at http://www.cedar-net.eu/instruments. TRIAL REGISTRATION: ISRCTN75841675.CEDAR study is funded by a grant from the Seventh Framework Programme (Research Area HEALTH-2007-3.1-4 Improving clinical decision making) of the European Union (Grant no. 223290)

    AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7

    Get PDF
    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival

    Activation of a cGAS-STING-mediated immune response predicts response to neoadjuvant chemotherapy in early breast cancer.

    Get PDF
    BACKGROUND: The DNA-damage immune-response (DDIR) signature is an immune-driven gene expression signature retrospectively validated as predicting response to anthracycline-based therapy. This feasibility study prospectively evaluates the use of this assay to predict neoadjuvant chemotherapy response in early breast cancer. METHODS: This feasibility study assessed the integration of a novel biomarker into clinical workflows. Tumour samples were collected from patients receiving standard of care neoadjuvant chemotherapy (FEC + /-taxane and anti-HER2 therapy as appropriate) at baseline, mid- and post-chemotherapy. Baseline DDIR signature scores were correlated with pathological treatment response. RNA sequencing was used to assess chemotherapy/response-related changes in biologically linked gene signatures. RESULTS: DDIR signature reports were available within 14 days for 97.8% of 46 patients (13 TNBC, 16 HER2 + ve, 27 ER + HER2-ve). Positive scores predicted response to treatment (odds ratio 4.67 for RCB 0-1 disease (95% CI 1.13-15.09, P = 0.032)). DDIR positivity correlated with immune infiltration and upregulated immune-checkpoint gene expression. CONCLUSIONS: This study validates the DDIR signature as predictive of response to neoadjuvant chemotherapy which can be integrated into clinical workflows, potentially identifying a subgroup with high sensitivity to anthracycline chemotherapy. Transcriptomic data suggest induction with anthracycline-containing regimens in immune restricted, "cold" tumours may be effective for immune priming. TRIAL REGISTRATION: Not applicable (non-interventional study). CRUK Internal Database Number 14232

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa
    corecore