931 research outputs found

    Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751

    Full text link
    We have obtained far-infrared Herschel PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable WRAY 15-751. These images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the H-alpha nebula. They also reveal a second, bigger and fainter dust nebula, observed for the first time. Both nebulae lie in an empty cavity, likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are about 20000 and 80000 years and each nebula contains about 0.05 Msun of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an "average" early-B star. The derived abundance ratios N/O=1.0+/-0.4 and C/O=0.4+/-0.2 indicate a mild N/O enrichment. We estimate that the inner shell contains 1.7+/-0.6 Msun of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4+/-2 Msun. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the RSG evolutionary phase of an ~ 40 Msun star. The presence of multiple shells around the star suggests that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an 40 Msun star with little rotation. They support the O-BSG-RSG-YSG-LBV filiation and the idea that high-luminosity and low-luminosity LBVs follow different evolutionary paths.Comment: 19 pages, 13 figures, accepted for publication in A&

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    Terminal velocities of luminous, early-type SMC stars

    Full text link
    Ultraviolet spectra from the Space Telescope Imaging Spectrograph (STIS) are used to determine terminal velocities for 11 O and B-type giants and supergiants in the Small Magellanic Cloud (SMC) from the Si IV and C IV resonance lines. Using archival data from observations with the Goddard High-Resolution Spectrograph and the International Ultraviolet Explorer telescope, terminal velocities are obtained for a further five B-type supergiants. We discuss the metallicity dependence of stellar terminal velocities, finding no evidence for a significant scaling between Galactic and SMC metallicities for Teff < 30,000 K, consistent with the predictions of radiation driven wind theory for supergiant stars. A comparison of the v/vescv_\infty / v_{esc} ratio between the SMC and Galactic samples, while consistent with the above statement, emphasizes that the uncertainties in the distances to galactic O-stars are a serious obstacle to a detailed comparison with theory. For the SMC sample there is considerable scatter in this ratio at a given effective temperature, perhaps indicative of uncertainties in stellar masses.Comment: 28 pages, 8 figures, accepted by ApJ; minor revisions prior to acceptanc

    The Herschel view of the nebula around the luminous blue variable star AG Carinae

    Full text link
    Far-infrared Herschel PACS imaging and spectroscopic observations of the nebula around the luminous blue variable (LBV) star AG Car have been obtained along with optical imaging in the Halpha+[NII] filter. In the infrared light, the nebula appears as a clumpy ring shell that extends up to 1.2 pc with an inner radius of 0.4 pc. It coincides with the Halpha nebula, but extends further out. Dust modeling of the nebula was performed and indicates the presence of large grains. The dust mass is estimated to be ~ 0.2 Msun. The infrared spectrum of the nebula consists of forbidden emission lines over a dust continuum. Apart from ionized gas, these lines also indicate the existence of neutral gas in a photodissociation region that surrounds the ionized region. The abundance ratios point towards enrichment by processed material. The total mass of the nebula ejected from the central star amounts to ~ 15 Msun, assuming a dust-to-gas ratio typical of LBVs. The abundances and the mass-loss rate were used to constrain the evolutionary path of the central star and the epoch at which the nebula was ejected, with the help of available evolutionary models. This suggests an ejection during a cool LBV phase for a star of ~ 55 Msun with little rotation.Comment: accepted for publication in A&

    Molecular form factors in X-ray crystallography

    Get PDF
    The calculation of molecular form factors from ab initio molecular electronic wavefunctions is discussed, and a scheme for application to X-ray diffraction structure analysis is given. The method is used to calculate the form factor of the NH+4 molecular ion from three accurate molecular wavefunctions, as well as for the corresponding isolated-atoms arrangement. The merits of the different form factors obtained are tested on experimental single-crystal X-ray diffraction data for NH4F. It appears that the quality of the form factor is determined by the number of centres in the wavefunction basis rather than by the wavefunction energy

    An independent distance estimate to CW Leo

    Get PDF
    CW Leo has been observed six times between October 2009 and June 2012 with the SPIRE instrument on board the Herschel satellite. Variability has been detected in the flux emitted by the central star with a period of 639 \pm 4 days, in good agreement with determinations in the literature. Variability is also detected in the bow shock around CW Leo that had previously been detected in the ultraviolet and Herschel PACS/SPIRE data. Although difficult to prove directly, our working hypothesis is that this variability is directly related to that of the central star. In this case, fitting a sine curve with the period fixed to 639 days results in a time-lag in the variability between bow shock and the central star of 402 \pm 37 days. The orientation of the bow shock relative to the plane of the sky is unknown (but see below). For an inclination angle of zero degrees, the observed time-lag translates into a distance to CW Leo of 130 \pm 13 pc, and for non-zero inclination angles the distance is smaller. Fitting the shape of the bow shock with an analytical model (Wilkin 1996), the effect of the inclination angle on the distance may be estimated. Making the additional assumption that the relative peculiar velocity between the interstellar medium (ISM) and CW Leo is determined entirely by the star space velocity with respect to the local standard of rest (i.e. a stationary ISM), the inclination angle is found to be (-33.3 \pm 0.8) degrees based on the observed proper motion and radial velocity. Using the Wilkin model, our current best estimate of the distance to CW Leo is 123 \pm 14 pc. For a distance of 123 pc, we derive a mean luminosity of 7790 \pm 150 Lsol (internal error).Comment: Accepted A&A Letter

    Large-scale environments of binary AGB stars probed by Herschel. II: Two companions interacting with the wind of pi1 Gruis

    Full text link
    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebul{\ae} (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims. We probe the environment of the very evolved AGB star π1\pi^1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods. Observations made with Herschel/PACS at 70 μ\mum and 160 μ\mum picture the large-scale environment of π1\pi^1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results. The Herschel/PACS images of π1\pi^1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 3838^{\prime\prime} from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star.Comment: 13 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    MSX, 2MASS, and the LMC: A Combined Near and Mid Infrared View

    Full text link
    The Large Magellanic Cloud (LMC) has been observed by both the Midcourse Space Experiment (MSX) in the mid-infrared and the Two Micron All Sky Survey (2MASS) in the near-infrared. We have performed a cross-correlation of the 1806 MSX catalog sources and nearly 1.4 million 2MASS catalogued point and extended sources and find 1664 matches. Using the available color information, we identify a number of stellar populations and nebulae, including main sequence stars, giant stars, red supergiants, carbon- and oxygen-rich asymptotic giant branch (AGB) stars, planetary nebulae, H II regions, and other dusty objects likely associated with early-type stars. 731 of these sources have no previous identification. We compile a listing of all objects, which includes photometry and astrometry. The 8.3 micron MSX sensitivity is the limiting factor for object detection: only the brighter red objects, specifically the red supergiants, AGB stars, planetary nebulae and HII regions, are detected in the LMC. The remaining objects are likely in the Galactic foreground. The spatial distribution of the infrared LMC sources may contribute to understanding stellar formation and evolution and the overall galactic evolution. We demonstrate that a combined mid- and near-infrared photometric baseline provides a powerful means of identifying new objects in the LMC for future ground-based and space-based follow-up observations.Comment: 23 pages, 10 figures, to appear in the AJ (2001 Oct issue). N.B: Tables 2 & 3 corrected and available as html file

    The detached dust shells of AQ And, U Ant, and TT Cyg

    Full text link
    Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found.Comment: Letter accepted for publication on the A&A Herschel Special Issu
    corecore