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The calculation of molecular form factors from ab initio molecular electronic wave functions is 
discussed, and a scheme for application to X-ray diffraction structure analysis is given. The method 
is used to calculate the form factor of the NH + molecular ion from three accurate molecular wave 
functions, as well as for the corresponding isolated-atoms arrangement. The merits of the different 
form factors obtained are tested on experimental single-crystal X-ray diffraction data for NHaF. It 
appears that the quality of the form factor is determined by the number of centres in the wave function 
basis rather than by the wave function energy. 

Introduction 

In X-ray diffraction structure analysis the electron 
density distribution in crystalline solids is usually 
resolved in terms of distinct, i.e. isolated, atoms or 
ions. Interatomic effects of chemical and general 
solid state binding are obscured in this scheme and 
resist quantitative evaluation. Efforts to account a 
priori for the effect of binding have been directed 
mainly at evaluating scattering factors for 'bonded' 
and 'valence state' atoms (McWeeny, 1951, 1952, 1953, 
1954; Freeman, 1959; Dawson, 1964; Stewart, David- 
son & Simpson, 1965). The use of molecular form fac- 
tors calculated from ab initio molecular wave func- 

tions is feasible for structures that may be resolved in 
terms of small molecules or molecular ions. Applica- 
tion of this method to X-ray crystallography seems to 
be non-existent or of questionable significance (Webb, 
1965; amended by Davis & Whitaker, 1966). Some 
success has been had with the use of a molecular form 
factor in the interpretation of electron scattering data 
from CH4 (Iijima, Bonham, Tavard & Roux, 1965). 

In this work we discuss the calculation of molecular 
form factors from ab initio wave functions and their 
application to X-ray diffraction structure analysis. The 
method is demonstrated for the N H4 + molecular ion 
in the NH4F structure. Results of subsequent few par- 
ameter structure refinements are given. 
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1. Calculation of molecular form factors 

The form factor (or coherent X-ray scattering factor) 
for an N-electron system (a molecule) is, within the first 
Born approximation, 

N 

f(s) = ( ~ l  ~r exp ( is .  r 0 ] ~ ) ,  (1) 
i = l  

where s is equal to k - k 0 ,  where k0 and k are the wave 
vectors of the incident and scattered beam, and r~ de- 
notes the position coordinate of the ith electron with 
respect to a common origin. For 7-/we take the ground 
state electronic wave function in a fixed-nuclei con- 
figuration. If qs is exact, or a properly antisymmetrized 
approximation, f(s) reduces to the Fourier transform 
of the one-electron probability distribution function: 

f(s) = N I drQ(r)exp (is .  r ) ,  (2) 

~(r) = ( ~ 1 6 ( r -  rd[ ~ )  

(H. F.) 
iV 

= N -x S I~0~(r)l / , 
t = l  

(3) 

where, in the second line of equation (3) we have re- 
stricted ourselves to approximate wave functions of 
Hartree-Fock form, since inclusion of configuration 
interaction terms adds no new features to the nature 
of the calculations. The one-electron orbitals ~0~(r) 
(space coordinate functions) are taken to be constructed 
by linear combination of certain basis functions z~(r): 

~oi(r)= N Civzv(r). (4) 
P 

In terms of these basis functions the form factor of 
the system becomes: 

N 

f(s)= z z G p c j p d s ) ,  (5) 
i = l  p, q 

f~a(s) = I drz~(r)xa(r) exp ( is .  r ) ,  (6) 

where for convenience the linear coefficients and basis 
functions have been assumed to be real. The problem 
of calculating the elements f~ ( s )  contributing to f(s) 
is now determined by the nature of the basis {Z~}. 

The basis functions Z~ are usually of factorized form 
with respect to some origin (atomic nucleus), 

z~(r') = 0~(r')Szm(0 ', q~'), (7) 

where Szm is a real surface harmonic and the primes 
indicate that the coordinates refer to the origin of 
factorization. In the following there is little oppor- 
tunity for confusing the one-electron probability dis- 
tribution, 4, with the radial functions 0~. Since more 

centres may be present in the basis {Z~} (in the case 
of multi-centre wave functions) the integrals f~q(s) may 
be of one (O) centre (C) or of two centre (TC) type. As 
shown in the Appendix, OC integrals can be reduced 
to derivatives of simple analytic basic forms if the 
radial basis functions, Qp, are analytic (of Slater or 
Gaussian type), while for numerical •p one-dimensional 
integration has to be performed numerically. TC inte- 
grals can be reduced to derivatives of basic forms if 
the radial basis is Gaussian, while for a Slater radial 
basis, projection of the Q~ on a Gaussian basis has 
been demonstrated by McWeeny (1953) for a special 
case. 

Within the same formalism the wave function for 
an isolated-atoms arrangement is an antisymmetrized 
product of single-atom wave functions. Here we have 
a multi-centre basis {X~}; no TC elements fv~(s) arise, 
however, as any orbital is constructed from common- 
centre basis functions only. 

The resulting molecular form factor f(s) constitutes, 
in general, a three-dimensional field of numbers, within 
which the symmetry of the molecule is preserved. Tab- 
ulation off(s)  is, therefore, not attractive. Instead, for 
profitable application in X-ray diffraction structure 
analysis, required values o f f  for measured reflexions 
s(h, k, l) are calculated directly from the available wave 
function. 

2. Application in X-ray crystallography 

The present approach resolves the electron distribution 
in crystalline solids in terms of distinct molecules, 
molecular ions, atoms and/or ions. In the following 
all these systems are regarded as molecules. Therefore, 
the summation in the familiar expression for the struc- 
ture factor F for a particular reflexion s, 

F (s )=  SJ)(s)Tj(s) exp (is .  Rj) ,  (8) 
J 

is now over all distinct molecules in the crystallographic 
unit cell. In (8), Tj = exp ( - s .  Bj .  s) and Rj denote 
the temperature factor and position of molecule j. 

It is seen that in this formalism each distinct system 
has one temperature factor, implying the treatment of 
molecules as rigid scatterers. The seriousness of this 
restriction is not easy to estimate, since it is related 
to the problem of the distribution of lattice vibrational 
modes contributing to the mean-square displacements 
of the atoms in the structure. It seems that at sufficiently 
low temperatures the high frequency contributions be- 
come less important (James, 1948), justifying to some 
extent the use of small rigid scatterers. 

Now the vector s in (8) for reflexion hkl  is de- 
fined with respect to the crystallographic unit-cell co- 
ordinate system (a,b,c) while for calculation of J~(s) 
the (Cartesian) components of s are needed in the 
molecular coordinate system (xj,yj, zj) of molecule j 
(as determined for convenience of wave function cal- 
culation reflected by the choice of the basis {Z~}). 
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Hence, t ransformation matrices Kt are required to 
t ransform s(a,b,c) to s(xj,yj, z~) for each molecule j 
(different Kj may, of  course, be related by the symmetry 
properties of  the structure). Therefore, in order to 
apply molecular  form factors in structure analysis, a 
prel iminary analysis in terms of distinct atoms must  
be carried out to establish the Rj and Kg. 

The overall procedure of structure analysis in terms 
of molecules is pictured in Fig. 1. The experiment de- 
fines the set of  observed reflexions, indicated by 
{s(a,b,c)}. A conventional  structure analysis (1) in 
terms of atoms provides the positons of all atoms 
in the unit  cell and hence defines the set, [Rg, Kj.], of  
positions and orientations of all distinct molecules with 
respect to the unit-cell coordinate system. Applicat ion 
of  the Kj to set {s(a,b,c)} produces the sets {s(x~,y~,zj)}. 

In the next stage the sets {J)} are calculated f rom 
the available wave function(s) as discussed in § 1. 
These then allow for calculation of {Fcale} which is 
compared with {lobs} in a final structure analysis (2) 
in terms of molecules, in order to refine remaining 
parameters and establish agreement indices. 

An  overall feature of the procedure is a reduction 
of the number  of adjustable parameters,  since in anal- 
ysis (2) only positions R~ and temperature factors Tj 
of  molecules may  be refined. (Orientations Kj of mol- 
ecules may be varied if  one is prepared to go back in 
the procedure and recalculate [{J)}].) An  interesting 
possibility, not explored in the present investigation, 
is the variat ion of nuclear positions in the wave func- 
tion and a study of the resultant effect on crystallo- 
graphic analysis. 

Diffraction experiment 1 

{Io~(s)} 
Analysis (1) in terms of atoms 

, {s(a,b,c)} 

//////I / 
, [Rj, Kj] [{s(xj,yj,zj)}] 

equation (8) calculate ~u__+f for all s(x~,yj, z~) 

(Feaze) * [{f~}] ' 

Analysis (2) in terms of molecules 

Final output in form of refined 
parameters and agreement factors 

Fig. 1. Procedure for structure analysis in terms of distinct molecules. Curly brackets denote the set of observed reflexions. 
Square brackets denote the set of molecules in the crystallographic unit cell. 

Table 1. Specification of N H  + wave functions; calculation of corresponding form factors 

~i~ ~M ~A o [ / - /~]  
Reference Krauss Moccia Albasiny-Cooper Clementi 

(1963) (1964) (1963) (1965) 
Approximation a HF HF HF IA 
Energy (a.u.) - 56.5038 - 56.306 - 56.306 - 55.690 
Type radial basis b MC-G OC-S OC-N MC-S 
Dimension radial basis 16 11 6 9 
Number lin. coeff. 31 18 14 
N-H distance (a. u.) 1.9464 1.9900 c 1-90 c optional 

f calculation procedure a A A N A 
Computing time e 27 9 55 4 

(a) Hartree-Fock; isolated atoms. 
(b) Multi-centre or one-centre; Gaussian, Slater or numerical. 
(c) Near calculated equilibrium distance. 
(d) Analytical or by numerical integration. 
(e) In seconds, for one value of s. 
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3. Form factor of NH + 

The form factor of the NH4 + molecular  ion was cal- 
culated f rom three accurate ( judged by the calculated 
energy) molecular  wave functions (Krauss, 1963; Moc- 
cia, 1964; Albas iny & Cooper, 1963), and for the cor- 
responding isolated-atoms arrangement.  Informat ion 
on the different wave functions is collected in Table 1. 
The Albas iny-Cooper  wave function results f rom 
numerical  solution of the Har t ree -Fock  equations and 
the radial  functions obtained are available tabulated 
at 57 argument  values.* 

In  the last column of Table 1 an isolated-atoms wave 
function is given, an ant isymmetrized product of one 
N + and four properly centered H atomic wave func- 
tions. For  the open shell N + ion a 1S wave function 
(Clementi,  1965) was chosen, since the other (lower 
energy) states have aspherical one-electron density dis- 
tr ibutions which are not invariant  under  the Te sym- 
metry group of N H  +. This 1S wave function is actually 
of configuration interaction form, but the calculations 
are completely analogous to the H.F.  case. The energy 
of the isolated-atoms system is the sum of the N + and 
four (free) H atomic energies, and is independent  of  
the N - H  distance. 

Fo rm factors were calculated for all wave functions 
of Table 1. The average times needed for comput ing 

fNr~ + for a part icular vector s, listed in Table 1, refer 

* We thank Dr Albasiny for providing us with additional 
information on the integration procedure to be employed for 
the radial functions. 

to an IBM system 360/30 computer.  These times may 
be considered upper limits since improvement  of  the 
programs is probable.  A set {f}, corresponding to a 
number  of values s, shows f decreasing with s in a 
manner  familiar  f rom atomic form factors, with a 
wealth of detail dependent  on the orientation of s with 
respect to the molecule superimposed. Since {f} cor- 
responds to the Fourier  t ransform of the one electron 
density distr ibution of the N H  + ion, effects of  chemical 
bonding will be preserved in {f} if  the resolution of 
the set is fine enough. 

4. Application to NH4F structure analysis 

The structure of NH4F has recently been studied in 
this laboratory with X-ray and neutron diffraction by 
Adr ian  (1968) and Adr ian  & Feil (1969), f rom whose 
work we quote the following results of  importance for 
the present investigation: 

The N H  + ion does not rotate at roo.m temperature.  
The symmetry of the N H  + ion is almost  tetrahedral.  

(NH4F has the wurtzite structure with an u parameter  
of 0.378. This posit ional parameter  determines the rela- 
tive positions of the two h.c.p, sublattices.) 

Thermal  mot ion of  the N and F nuclei is approx- 
imately isotropic (individual isotropic temperature fac- 
tors f rom neutron diffraction are B F = 0 . 8 2  and B~v= 
0.86 at - 196°C). 

The N - H . . . F  hydrogen bond displays little con- 
centration of electronic charge in between H and F. 

Refined N - H  distances are 1.95 a. u. (neutron diffrac- 
tion) and 1.75 a.u.  (X-ray diffraction). 

Table 2. Results of the 4 parameter (overall scale factor, individual isotropic temperature factors, 
one positional parameter) refinement NHaF  crystal structure at -155 °C 

Refined parameters Agreement 
Wave function ~ ^ 

employed for NH4 + o.s.f. B~ BN u R Rw 
Krauss (1963) 16"53 (14)* 1"10 (2) 1"06 (2) 0.3778 (2) l '8t  2"6t 
Moccia (1964) 17.04 (40) 1.14 (6) 1.13 (6) 0"3778 (6) 3.3 7.2 
Albasiny & Cooper (1963) 16.87 (26) 1.12 (4) 1.14 (4) 0.3778 (4) 2.8 4"6 
Isolated atoms 
With N-H d=1.95 16.96 (30) 1.16 (4) 1.11 (6) 0.3781 (4) 2.5 5.3 

1.75 16.95 (22) 1.15 (4) 1.11 (4) 0-3780 (4) 2.0 4"0 

* Bracketed numbers indicate standard deviations. 
t R-values are given in %. 

Table 3. Results of the 2 parameter (overall scale factor, overall isotropic temperature factor in addition 
to individual input values) refinement NH4F crystal structure employing neutron diffraction information 

Refined parameters Agreement 

Wave function employed for NH4 + o.s.f. BF (B~) R Rw 
Krauss (1963) 16"47 (16)* 1"07 (2) 1-11 l '9t  3"0t 
Moccia (1964) 16"94 (40) 1.11 (6) 1.15 3.1 7.3 
Albasiny & Cooper (1963) 16.82 (26) 1.10 (4) 1.14 2.7 4"6 
Isolated atoms with N-H d= 1.95 16.84 (30) 1.12 (4) 1.16 2.5 5"5 

1"75 16.83 (24) 1.11 (4) 1.15 1.9 4"3 

* Bracketed numbers indicate standard deviations. 
t R-values are given in %. 
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The evidence listed supports the choice of NH4F as 
a test case for application of the NH + molecular ion 
form factor. 

For comparison of calculated predictions with ex- 
periment, we use Adrian's NH4F single-crystal X-ray 
diffraction data, obtained with Mo radiation at 
- 1 5 5 ° C  (175 reflexions, 95 of them independent). 
These define the sets {lobs} and {s(a,b,c)} mentioned 
in Fig. 1. The NH4F structure will here be resolved in 
terms of distinct NH + and F-  ions. There are two dif- 
ferent orientations for the NH4 + ion (outcome of anal- 
ysis (1) in terms of atoms) defining the set [Ks] while 
for the spherically symmetric F-  ion no transformation 
of {s} is necessary. The sets [{s(xj,yj, zj)}] are thus de- 
fined and the corresponding sets [{J}}] were calculated 
for all wave functions of Table 1. For the F-  ion only 
one wave function was employed (Clementi, 1965). 

A set of structure factors {Feale(s)} may now be cal- 
culated according to equation (8) for each wave func- 
tion of Table 1 and compared with the observed inten- 
sities {Iobs}. Remaining parameters (overall scale fac- 
tor, molecular positions and temperature factors) may 
be adjusted with a suitable refinement procedure. For 
this purpose, the ORFLS least-squares refinement pro- 
gram (Busing, Martin & Levy, 1962) was modified 
(Adrian, 1968) to read the elements of the sets {J)} 
as input data, instead of employing regular atomic scat- 
tering factor tables. 

Various refinements (different numbers of adjustable 
parameters; different weighting schemes) were per- 
formed and the results presented in Tables 2 and 
3 are representative. The isolated-atoms wave func- 
tion was employed with several N - H  distances. Two 
of these are given in the Tables, corresponding to the 
distances determined by neutron and X-ray diffraction. 
The R values listed are defined as usual in X-ray crys- 
tallography: 

R = X AF/_r [Fobs[, (9) 

Rw= { Z (wAF)2/ ~r (wlFobsl)z}l/2 (10) 

where the summations are over all observed reflexions 
and Af=[Ifobsl-Ifcalcl]. The weighting scheme em- 
ployed for the refinements of Tables 2 and 3 is w -1 = 
]Fobs[ for all reflexions. For the 2 parameter refinement 
of Table 3 the maximum amount of information from 
neutron diffraction structure analysis has been used: 

the positional parameter, u, (0.3780) and individual 
isotropic temperature factors (BF=0"82 and BN= 
0"86 at -- 196 0(2). To make up for the temperature dif- 
ference between the two experiments, a common in- 
crement was added to these B values in the refinement. 

It will be seen that analysis employing the molecular 
form factor calculated from Krauss's multi-centre wave 
function comes out best, judged by the values of the 
R values. The one-centre functions, however, though 
of appreciably lower energy than the isolated-atoms 
function, compare less favourably with the latter in 
predicting X-ray scattering, especially when the N - H  
distance of the isolated atoms is decreased (which cor- 
responds actually to refinement of an additional par- 
ameter). It is, therefore, concluded that the reliability 
of molecular form factors is mostly determined by the 
presence of the appropriate number of centres in the 
wave function basis, and only then by the predicted 
energy of the system. 

There is reason to suppose that in the comparison 
discussed the discrepancies between the different wave 
functions, and hence between the corresponding form 
factors, have partly been compensated for by the ad- 
justable parameters (note the differences in the refined 
overall scale factors). This may be judged from the 
following analysis. 

In Table 4, X-ray scattering as predicted by the 
various wave functions is compared on a purely theo- 
retical basis. For this purpose a fictitious NH + crystal 
structure is created by reducing the scattering power 
of the F-  ion in NH4F to zero. Pairs (i,j) of sets {Feale} 
obtained for different wave functions (i,j) may now 
be compared (without any adjustable parameters) and 
pairwise disagreement, as indicated by the R(i,j) values, 
evaluated. The set {s} employed is the same as the one 
used before. The R values are defined as in equations 
(9) and (10) with Fobs=Feale(i) and Feale=Feale(j). 
The differences here are more pronounced, suggesting 
the compensating effect of the refined parameters in 
the NH4F analysis. 

5. Conclusion 

The calculation of molecular form factors and their 
application in X-ray crystallography has been dis- 
cussed. Within the present approach the electron den- 
sity in crystalline solids is resolved in terms of molecules 
instead of atoms. Intermolecular chemical binding is 

Table 4. Comparison of NH + X-ray scatter&g as predicted by different wave functions 

Isolated Isolated 
Wave function Krauss Moccia Albasiny atoms atoms 
N-H distance 1.9464 1 "99 1-90 1 "95 1"75 
Krauss (1963) - 3.6* 3.0 4.2 3.1 
Moccia (1964) 8"7t - 1.9 5"9 4.6 
Albasiny & Cooper (1963) 6.3 5.3 - 5"6 4.3 
IA (1.95) 6.9 8.2 7.2 - 1.7 
IA (1"75) 5.2 7.8 5.2 2.9 - 

* Upper right entries: R in %. 
t Lower left entries: Rw in %. 
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properly accounted for, but the molecules are treated 
as rigid scatterers, favouring application at lower tem- 
peratures. The method has been applied to the NH + 
molecular ion in NH4F. The results of this analysis 
show that within the rigid scatterer approximation the 
model employing a molecular form factor for NH + 
calculated from a multi-centre wave function agrees 
better with experiment than the isolated-atoms model 
(even with the H atoms optimally displaced inwards 
the bond directions in order to compensate for the 
effect of chemical binding). Molecular form factors 
derived from one-centre wave functions are less satis- 
factory; apparently their shortcomings in reproducing 
the one-electron probability density near the off-centres 
outweigh their ability to account for chemical binding. 
In this connexion the results of the analysis of electron 
diffraction data on methane with a one-centre wave 
function (Iijima, 1965) are surprising. 

The test case chosen is probably not the most profi- 
table one, as the effect of chemical binding on a H 
atom may quite well be represented by displacement 
(and contraction) of its electron density (Stewart, Da- 
vidson & Simpson, 1965). As another case for appli- 
cation, the scattering of the CN-  ion is currently being 
studied. In general, the limitations for application of 
molecular form factors are determined by the avail- 
ibility of ab initio molecular wave functions, im- 
plying a restriction to structures that may be resolved 
in terms of small molecules or molecular ions. 

A P P E N D I X  

The problem of calculating molecular form factors 
from molecular wave functions requires evaluation of 
elements f~q(s), cf. equation (6), which are given here 
in the form: 

f~q(s) = I d rz~( r -R~)zq( r -Rq)  exp (i s. r) 

= exp (is .  Ra0) l drz~(r)zq(r + Rpq) exp (is .  r ) ,  (6a) 

where X~o and Zq refer to their centres of factorization. 
For OC integrals R~oq = R~0 - Rq = 0. 

For a Gaussian basis {X~} both OC and TC integrals 
can be evaluated analytically, if the functions Zp are 
of the form 

X~o(r) = r 2np+l. exp ( -  o~rrZ)Slpmp(O, ~o) 

= Qr(r)Ptpmp(x,y,z), (11) 

where Pzm is a polynomial of degree l in x = r sin 0 cos ~0, 
y = r sin 0 sin ~ and z = r cos 0, corresponding to rtStm, 
and 0r(r) is defined here slightly different from equa- 
tion (7) and must be even in r. Different terms in P 
are treated individually and in the following we under- 
stand Pz to be a single product in x, y and z of degree l. 
The reduction of (6a) is then as follows. 

(, 
f~q(S) exp ( is .  R~) .~ dra~(r)Pzp(x,y, Z)Xq(r + Rpq) 

x exp ( is .  r) 

= exp ( is .  R~) (-i)tpDtp(sx, su, sz) f drop(r) 

×xq(r+R~q) exp (is .  r ) ,  (12) 

where Dl denotes an operator of differentiation with 
respect to Sx, Su, Sz. Application of Dt to exp ( is .  r) 
produces the function Pt(x,y,z)ilp exp ( is .  r). The re- 
maining integral is further reduced by 

I dro~(r)xq(r R~q) exp (is .  r ) = ( -  1)npDnp(~o) + 

x I drQ°(r)zq(r + R~oq) exp (is .  r ) ,  (13) 

with Q°(r)= exp (-cqor 2) and Dn(~r) denoting the nth 
order derivative with respect to ~p. The integral now 
remaining is further reduced by first shifting the origin 
of the coordinate system of integration to the centre 
of Xq and applying the same reduction technique. The 
result is 

.frq(S) = ( -  i)2(np+nq)+tp+tq 

x exp (is .  Rr)Dtp(sx, su, sz)Dnp(oqo) 
x exp ( - i s .  Rpq)Dtq(sz, su, sz)Dnq(c(q) 

x I dr~°(Ir-  R~ql)~°(r) exp (is .  r) (14) 

where it has been tacitly assumed that the orientations 
(0, ~) at the centresp and q defined by (11) are the same. 
The integral at the end of (14) is easily evaluated and 
is equal to 

(_~_p ~__~q_)3/2 exp {--4°cp°cqR2q +4i°q°R~q's-s2  ( 1 5) 
4(~:o + ~q) j 

as already obtained by McWeeny (1953), who also 
treated some special cases of the above problem though 
by a somewhat different approach. All elements fpq(S) 
can thus be obtained by differentiation of simple ana- 
lytic basic forms (15). For OC integrals the procedure 
is even more simple, as R~oq=0 and all differentiation 
operations may be permuted to convenience. 

For a Slater basis the same technique is applicable 
for OC integrals. The differentiations Dn are now with 
respect to the Slater exponential coefficients ~ and the 
final analytic basic form is 

I drrnp+na -2 exp ( -  ~ r -  Car + r) 
F(nv + nq) 

is.  ~4~ 
3 

x {(~+~q)2+s~)-(-~+-~)/~ 

x sin (np + nq) arctg ~-+-~-q , (16) 

also obtained by McWeeny (1951). This formula is 
valid for non integral n~, and nq also. For TC integrals 
with a Slater basis, McWeeny's approach, of projecting 
the Slater functions on a suitable Gaussian basis, seems 

A C 25A - 4 
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a feasible method which keeps the advantages of the 
above reduction procedure (McWeeny, 1953; for 
different approaches to the evaluation of some TC 
Slater integrals cf. Bonham, Peacher & Cox, 1964; 
Guerillot, Ganachaud & Lissillour, 1968). 

When the final form cannot be evaluated analytically, 
the method above of replacing integration by differen- 
tiation is useless. This is the case when the radial basis 
{0~o} is numerical. However, for OC integrals, the three- 
dimensional integrals over r can be reduced to one- 
dimensional ones by similar techniques. Here 

f ~q(s)= lodrr2Q~(r)Qq(r) I dogP~p(x,Y,z)Pz~(x,Y,Z) 

l;drr2Q~ x exp ( is .  r ) =  (r)Qq(r) 

x 4zc(-i)tp+Z~Dh,+z~(sx, Sy, Sz)jo(sr), (17) 

where j0 is the zero order spherical Bessel function. 
Application of Dt to j0 is easily performed employing 
the properties of the functions jn. Computation of the 
remaining integral over r requires evaluation of jn(sr) 
up to n =l~ + lq at all argument values of the numer- 
ically defined Q~. A different treatment of this problem 
was given by Freeman (1959). 

We thank Mr H.W.W.Adr ian  for many creative 
discussions and for the ready access he gave us to the 
results of his investigation. 
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The Deformations of the Ions in NaCI and AgCI Crystals and the Temperature Parameters 
of Ions in Some Alkali Halides 
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Results of X-ray powder intensity measurements and spherical harmonic expansions have been used for 
investigating deformations of the ions in NaCI and AgC1 crystals. It is found that within the limits of 
experimental accuracy the ions in crystalline NaC1 are spherically symmetric. Compared with free ions, 
the charge around Ag in AgCI has spread farther and a part of it is located inside the CI sphere. The elec- 
tron clouds inside the Ag and C1 spheres are, however, almost spherically symmetric. It has been shown 
that the results of recent X-ray measurements concerning the Debye-Waller coefficients of the ions 
in alkali halide crystals have one prominent feature" the square of the relative vibration amplitude of an 
individual ion, which is proportional to the ratio B/aZ (B is the Debye-Waller coefficient and a the 
length of the edge of the unit cell), increases when the number of electrons of its company increases. 
It is proposed that this dependence is mainly due to the repulsive forces between the next-nearest- 
neighbours. 

1. Introduction 

It~has been often proposed that there are some un- 
spherical deformations of the ions of alkali halide 

crystals in spite of the high symmetry of these crystals 
and of their ideal ionic character. For example, Kor- 
honen (1956) has analysed the measurements of Wasa- 
stjerna (1944) and found deformations in the electron 


