75 research outputs found

    Quantum Calculation of Inelastic CO Collisions with H. II. Pure Rotational Quenching of High Rotational Levels

    Get PDF
    Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface~(PES) of Song et al. (2015). State-to-state cross sections for collision energies from 105^{-5} to 15,000~cm1^{-1} and rate coefficients for temperatures ranging from 1 to 3000~K are obtained for CO(v=0v=0, jj) deexcitation from j=145j=1-45 to all lower jj' levels, where jj is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for jj=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with previous scattering results using earlier PESs. Astrophysical applications of the current results are briefly discussed.Comment: 8 figures, 1 tabl

    Producing translationally cold, ground-state CO molecules

    Get PDF
    Carbon monoxide molecules in their electronic, vibrational, and rotational ground state are highly attractive for trapping experiments. The optical or ac electric traps that can be envisioned for these molecules will be very shallow, however, with depths in the sub-milliKelvin range. Here we outline that the required samples of translationally cold CO (X1Σ+^1\Sigma^+, v"v"=0, N"N"=0) molecules can be produced after Stark deceleration of a beam of laser-prepared metastable CO (a3Π1^3\Pi_1) molecules followed by optical transfer of the metastable species to the ground state \emph{via} perturbed levels in the A1Π^1\Pi state. The optical transfer scheme is experimentally demonstrated and the radiative lifetimes and the electric dipole moments of the intermediate levels are determined

    Vibrational predissociation in the HCl dimer

    Get PDF
    Contains fulltext : 13810.pdf (publisher's version ) (Open Access

    Photodissociation of the OD radical at 226 and 243 nm

    Get PDF
    The photodissociation dynamics of state selected OD radicals has been examined at 243 and 226 nm using velocity map imaging to probe the angle–speed distributions of theD(2S) and O(3P2) products. Both experiment and complementary first principle calculations demonstrate that photodissociation occurs by promotion of OD from high vibrational levels of the ground X 2Π state to the repulsive 1 2Σ− state

    Magnetic anisotropy of individually addressed spin states

    Get PDF
    Controlling magnetic anisotropy is a key requirement for the fundamental understanding of molecular magnetism and is a prerequisite for numerous applications in magnetic storage, spintronics, and all-spin logic devices. In order to address the question of molecular magnetic anisotropy experimentally, we have synthesized single crystals of a molecular spin system containing four antiferromagnetically coupled s=5/2 manganese(II) ions. Using low-temperature cantilever magnetometry, we demonstrate the selective population of the S=0,1,...,10 spin states upon application of magnetic fields up to 33 T and map the magnetic anisotropy of each of these states. We observe a strong dependence of the shape and size of the magnetic anisotropy on the populated spin states, and, in particular, reveal an anisotropy reversal upon going from the lowest to the highest spin state

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ^3\Sigma^-) + NH(3Σ^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011
    corecore