100 research outputs found

    Microcystis aeruginosa: source of toxic microcystins in drinking water

    Get PDF
    Cyanobacteria are one of the earth's most ancient life forms. Evidence of their existence on earth, derived from fossil records, encompasses a period of some 3.5 billion years in the late Precambrian era. Cyanobacteria are the dominant phytoplanton group in eutrophic freshwater bodies worldwide. They have caused animal poisoning in many parts of the world and may present risks to human health through drinking and recreational activity. Cyanobacteria produce two main groups of toxin namely neurotoxins and peptide hepatotoxins. They were first characterized from the unicellular species, Microcystis aeruginosa, which is the most common toxic cyanobacterium in eutrophic freshwater. The association of environmental parameters with cyanobacterial blooms and the toxicity of microcystin are discussed. Also, the synthesis of the microcystins, as well as the mode of action, control and analysis methods for quantitation of the toxin is reviewed. Key Words: Cyanobacteria, microcystins, mcyB gene, PCR-RFLP. African Journal of Biotechnology Vol.3(3) 2004: 159-16

    Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    Get PDF
    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently

    Development of new microalgae-based sourdough "crostini": functional aspects of Arthrospira platensis (spirulina) addition

    Get PDF
    The aim of this work was to evaluate the influence of Arthrospira platensis F&M-C256 (spirulina) incorporation on the nutritional and functional properties of “crostini”, a leavened bakery product largely consumed in Italy and Europe. Sourdough was used as leavening and fermentation agent and three concentrations of A. platensis F&M-C256 were tested: 2%, 6% and 10% (w/w). Despite a lower volume increase compared to the control, the A. platensis F&M-C256 “crostini” doughs reached a technological appropriate volume after fermentation. At the end of fermentation, no significant differences in microorganisms concentrations were observed. A. platensis F&M-C256 “crostini” showed higher protein content compared to the control. Considering the European Commission Regulation on nutritional claims, “crostini” incorporated with 6% and 10% biomass can be claimed to be a “source of protein”. Six and ten percent A. platensis “crostini” also presented significantly higher antioxidant capacity and phenolics. A significantly lower value of in vitro dry matter and protein digestibility between A. platensis F&M-C256 “crostini” and the control was found. The overall acceptability decreased with increasing A. platensis F&M-C256 addition. The combination of spirulina biomass addition and the sourdough technology led to the development of a novel microalgae-based bakery product with nutritional and functional featuresinfo:eu-repo/semantics/publishedVersio

    Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations

    Get PDF
    Microalgae of numerous heterotrophic genera (obligate or facultative) exhibit considerable metabolic versatility and flexibility but are currently underexploited in the biotechnological manufacturing of known plant-derived compounds, novel high-value biomolecules or enriched biomass. Highly efficient production of microalgal biomass without the need for light is now feasible in inexpensive, well-defined mineral medium, typically supplemented with glucose. Cell densities of more than 100 g l−1 cell dry weight have been achieved with Chlorella, Crypthecodinium and Galdieria species while controlling the addition of organic sources of carbon and energy in fedbatch mode. The ability of microalgae to adapt their metabolism to varying culture conditions provides opportunities to modify, control and thereby maximise the formation of targeted compounds with non-recombinant microalgae. This review outlines the critical aspects of cultivation technology and current best practices in the heterotrophic high-cell-density cultivation of microalgae. The primary topics include (1) the characteristics of microalgae that make them suitable for heterotrophic cultivation, (2) the appropriate chemical composition of mineral growth media, (3) the different strategies for fedbatch cultivations and (4) the principles behind the customisation of biomass composition. The review confirms that, although fundamental knowledge is now available, the development of efficient, economically feasible large-scale bioprocesses remains an obstacle to the commercialisation of this promising technology

    Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering

    Get PDF
    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review

    Microalgae as second generation biofuel. A review

    Full text link
    corecore