4,614 research outputs found

    L'héritage des collisionneurs LEP et TeVatron

    No full text
    Les quinze derniÚres années du précédent millénaire ont donné lieu, grùce à l'avÚnement de trois projets majeurs en Physique des Hautes énergies, à une moisson de résultats permettant une meilleure compréhension des mécanismes régissant l'évolution de l'Univers. Le LEP et le SLC, d'une part, et le TeVatron, d'autre part, ont recueilli pendant plus d'une décennie les fruits des collisions électron-positon et proton-antiproton avec une énergie et une précision jamais atteintes auparavant. Nous nous concentrerons ici sur la finesse et la portée fondamentale de ces mesures de précision, et nous concluerons par les signes avant-coureurs de probables futures découvertes

    Muonium-Antimuonium Oscillations in an extended Minimal Supersymmetric Standard Model with right-handed neutrinos

    Full text link
    The electron and muon number violating muonium-antimuonium oscillation process in an extended Minimal Supersymmetric Standard Model is investigated. The Minimal Supersymmetric Standard Model is modified by the inclusion of three right-handed neutrino superfields. While the model allows the neutrino mass terms to mix among the different generations, the sneutrino and slepton mass terms have only intra-generation lepton number violation but not inter-generation lepton number mixing. So doing, the muonium-antimuonium conversion can then be used to constrain those model parameters which avoid further constraint from the Ό→eÎł\mu\to e\gamma decay bounds. For a wide range of parameter values, the contributions to the muonium-antimuonium oscillation time scale are at least two orders of magnitude below the sensivity of current experiments. However, if the ratio of the two Higgs field VEVs, tan⁥ÎČ\tan\beta, is very small, there is a limited possibility that the contributions are large enough for the present experimental limit to provide an inequality relating tan⁥ÎČ\tan\beta with the light neutrino mass scale mÎœm_\nu which is generated by see-saw mechanism. The resultant lower bound on tan⁥ÎČ\tan\beta as a function of mÎœm_\nu is more stringent than the analogous bounds arising from the muon and electron anomalous magnetic moments as computed using this model.Comment: 29 pages, 7 figures, 3 tables, Late

    Fitting the Phenomenological MSSM

    Full text link
    We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model (pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25 weak-scale MSSM parameters, which are simultaneously fit using `nested sampling' Monte Carlo techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and constrain its parameters and observables in the context of two widely different, but reasonable, priors to determine which inferences are robust. We make inferences about sparticle masses, the sign of the Ό\mu parameter, the amount of fine tuning, dark matter properties and the prospects for direct dark matter detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred lightest CP-even Higgs boson mass as an example of an approximately prior independent observable. This analysis constitutes the first statistically convergent pMSSM global fit to all current data.Comment: Added references, paragraph on fine-tunin

    Virtual Top-Quark Effects on the H->bb-bar Decay at Next-to-Leading Order in QCD

    Full text link
    By means of a heavy-top-quark effective Lagrangian, we calculate the three-loop corrections of O(alpha_s^2 G_F M_t^2) to the H->bb-bar partial decay width of the standard-model Higgs boson with intermediate mass M_H<<2M_t. We take advantage of a soft-Higgs theorem to construct the relevant coefficient functions. We present our result both in the MS-bar and on-shell schemes of mass renormalization. The MS-bar formulation turns out to be favourable with regard to the convergence behaviour. We also test a recent idea concerning the naive non-abelianization of QCD.Comment: 8 pages (Latex), 5 figures (Postscript

    The Minimal Supersymmetric Standard Model: Group Summary Report

    Get PDF
    CONTENTS: 1. Synopsis, 2. The MSSM Spectrum, 3. The Physical Parameters, 4. Higgs Boson Production and Decays, 5. SUSY Particle Production and Decays, 6. Experimental Bounds on SUSY Particle Masses, 7. References.Comment: 121 pages, latex + epsfig, graphicx, axodraw, Report of the MSSM working group for the Workshop "GDR-Supersym\'etrie",France. Rep. PM/98-4

    The Neutralino Relic Density in Minimal N=1 Supergravity

    Full text link
    We compute the cosmic relic (dark matter) density of the lightest supersymmetric particle (LSP) in the framework of minimal N=1N=1 Supergravity models with radiative breaking of the electroweak gauge symmetry. To this end, we re--calculate the cross sections for all possible annihilation processes for a general, mixed neutralino state with arbitrary mass. Our analysis includes effects of all Yukawa couplings of third generation fermions, and allows for a fairly general set of soft SUSY breaking parameters at the Planck scale. We find that a cosmologically interesting relic density emerges naturally over wide regions of parameter space. However, the requirement that relic neutralinos do not overclose the universe does not lead to upper bounds on SUSY breaking parameters that are strictly valid for all combinations of parameters and of interest for existing or planned collider experiments; in particular, gluino and squark masses in excess of 5 TeV cannot strictly be excluded. On the other hand, in the ``generic'' case of a gaugino--like neutralino whose annihilation cross sections are not ``accidentally'' enhanced by a nearby Higgs or ZZ pole, all sparticles should lie within the reach of the proposed pppp and e+e−e^+e^- supercolliders. We also find that requiring the LSP to provide all dark matter predicted by inflationary models imposes a strict lower bound of 40 GeV on the common scalar mass mm at the Planck scale, while the lightest sleptons would have to be heavierComment: 53 pages(8figs are not included), Latex file; DESY 92-101, SLAC-PUB-586

    On the Spontaneous CP Breaking at Finite Temperature in a Nonminimal Supersymmetric Standard Model

    Full text link
    We study the spontaneous CP breaking at finite temperature in the Higgs sector in the Minimal Supersymmetric Standard Model with a gauge singlet. We consider the contribution of the standard model particles and that of stops, charginos, neutralinos, charged and neutral Higgs boson to the one-loop effective potential. Plasma effects for all bosons are also included. Assuming CP conservation at zero temperature, so that experimental constraints coming from, {\it e.g.}, the electric dipole moment of the neutron are avoided, and the electroweak phase transition to be of the first order and proceeding via bubble nucleation, we show that spontaneous CP breaking cannot occur inside the bubble mainly due to large effects coming from the Higgs sector. However, spontaneous CP breaking can be present in the region of interest for the generation of the baryon asymmetry, namely inside the bubble wall. The important presence of very tiny explicit CP violating phases is also commented.Comment: 28 pages, 4 figures available upon request, DFPD 94/TH/38 and SISSA 94/81-A preprint

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVb−h^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb∗=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    Heavy-Higgs Lifetime at Two Loops

    Get PDF
    The Standard-Model Higgs boson with mass MH>>2MZ M_H >> 2M_Z decays almost exclusively to pairs of WW and ZZ bosons. We calculate the dominant two-loop corrections of O(GF2MH4) O( G_F^2 M_H^4 ) to the partial widths of these decays. In the on-mass-shell renormalization scheme, the correction factor is found to be 1+14.6 1 + 14.6 % (M_H/TeV)^2 + 16.9 % (M_H/TeV)^4 , where the second term is the one-loop correction. We give full analytic results for all divergent two-loop Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to high precision using numerical techniques. We find agreement with a previous numerical analysis. The above correction factor is also in line with a recent lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure
    • 

    corecore