98 research outputs found

    Wave number selection under the action of accelerated rotation

    Get PDF
    Unsteady viscous incompressible flows in a spherical layer due to an increase in the rotation velocity of the inner sphere with constant acceleration are investigated. The acceleration starts at the Reynolds numbers Re corresponding to a stationary flow and ends at Re higher than the stability limit of the stationary flow, whereupon the rotation velocity of the inner sphere remains constant. The outer sphere is fixed and the spherical layer thickness is equal to the inner sphere radius. The inner sphere acceleration effect is studied on both the formation of one of two possible secondary-flow structures after the acceleration has been stopped, namely, traveling azimuthal waves with wavenumbers of 3 or 4, and on the change in the flow structure during the action of the acceleration. It is shown that not only an increase in the acceleration but also a decrease in Re corresponding to the acceleration onset can lead to an increase in the deviation of the instantaneous velocity profiles from their stationary values and can be accompanied by a variation in the secondary flow wavenumber.Peer reviewe

    New type of centrifugal instability in a thin rotating spherical layer

    Full text link
    We numerically model the instability of viscous incompressible fluid flows caused by torsional oscillations of the inner sphere in a thin spherical layer with respect to the state of rest. We show that an increase in the frequency of torsional oscillations leads to a change in the mode of the instability, with a transition from secondary flows in the form of Taylor vortices to the structures, which were not previously observed. The revealed instability is found in the frequency range from 0.61 to 2.45 Hz or, if the wavelengths are taken relative to the layer thickness, from 0.67 to 1.33. Β© Published under licence by IOP Publishing Ltd.This work was supported by the Russian Foundation for Basic Research project No. 16-05-00004 and 18-08-00074. MG acknowledges, in part, support from the ERC Advanced Grant No. 320773. Research at the Ural Federal University is supported by the Act 211 of the Government of the Russian Federation, agreement No 02.A03.21.0006. We thank Dr. Laura K. Zschaechner (University of Helsinki, Finnish Center for Astronomy with ESO) for her help with language corrections

    New type of centrifugal instability in a thin rotating spherical layer

    Get PDF
    We numerically model the instability of viscous incompressible fluid flows caused by torsional oscillations of the inner sphere in a thin spherical layer with respect to the state of rest. We show that an increase in the frequency of torsional oscillations leads to a change in the mode of the instability, with a transition from secondary flows in the form of Taylor vortices to the structures, which were not previously observed. The revealed instability is found in the frequency range from 0.61 to 2.45 Hz or, if the wavelengths are taken relative to the layer thickness, from 0.67 to 1.33.Peer reviewe

    Constraining the Physical Properties of Meteor Stream Particles by Light Curve Shapes Using the Virtual Meteor Observatory

    Get PDF
    Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids

    Wave number selection under the action of accelerated rotation

    Full text link
    Unsteady viscous incompressible flows in a spherical layer due to an increase in the rotation velocity of the inner sphere with constant acceleration are investigated. The acceleration starts at the Reynolds numbers Re corresponding to a stationary flow and ends at Re higher than the stability limit of the stationary flow, whereupon the rotation velocity of the inner sphere remains constant. The outer sphere is fixed and the spherical layer thickness is equal to the inner sphere radius. The inner sphere acceleration effect is studied on both the formation of one of two possible secondary-flow structures after the acceleration has been stopped, namely, traveling azimuthal waves with wavenumbers of 3 or 4, and on the change in the flow structure during the action of the acceleration. It is shown that not only an increase in the acceleration but also a decrease in Re corresponding to the acceleration onset can lead to an increase in the deviation of the instantaneous velocity profiles from their stationary values and can be accompanied by a variation in the secondary flow wavenumber. Β© Published under licence by IOP Publishing Ltd.This work was supported by the Russian Foundation for Basic Research Project No. 16-05-00004 and 18-08-00074. MG acknowledges,in part, support from the ERC Advanced Grant No. 320773. Research at the Ural Federal University is supported by the Act 211 of the Government of the Russian Federation, agreement No 02.A03.21.0006

    Measuring the Terminal Heights of Bolides to Understand the Atmospheric Flight of Large Asteroidal Fragments

    Get PDF
    The extent of penetration into the Earth's atmosphere of a meteoroid is defined by the point where its kinetic energy is no longer sufficient to produce luminosity. For most of the cases this is the point where the meteoroid disintegrates in the atmosphere due to ablation process and dynamic pressure during flight. However, some of these bodies have particular physical properties (bigger size, higher bulk strength, etc.) or favorable flight conditions (lower entry velocity or/and a convenient trajectory slope, etc.) that allow them to become a meteorite-dropper and reach the ground. In both cases, we define the end of the luminous path of the trajectory as the terminal height or end height. Thus, the end point shows the amount of deceleration till the final braking. We thus assume that the ability of a fireball to produce meteorites is directly related to its terminal height. Previous studies have discussed the likely relationship between fireball atmospheric flight properties and the terminal height. Most of these studies require the knowledge of a set of properties and physical variables which cannot be determined with sufficient accuracy from ground-based observations. The recently validated dimensionless methodology offers a new approach to this problem. All the unknowns can be reduced to only two parameters which are easily derived from observations. Despite the calculation of the analytic solution of the equations of motion is not trivial, some simplifications are admitted. Here, we describe the best performance range and the errors associated with these simplifications. We discuss how terminal heights depend on two or three variables that are easily retrieved from the recordings, provided at least three trajectory (h, v) points. Additionally, we review the importance of terminal heights, and the way they have been estimated in previous studies. Finally we discuss a new approach for calculating terminal heights.Peer reviewe

    Absolute spectral modelling of asteroid (4) Vesta

    Get PDF
    We present a new physics-based approach to model the absolute reflectance spectra of asteroid (4) Vesta. The spectral models are derived by utilizing a ray-optics code that simulates light scattering by particles large compared to the wavelength of the incident light. In the light of the spectral data obtained by the Dawn spacecraft, we use howardite powder to model Vesta's surface regolith and its particle size distribution for 10-200 mu m sized particles. Our results show that the modelled spectrum mimics well the observations. The best match was found using a power-law particle size distribution with an index 3.2. This suggests that Vesta's regolith is dominated by howardite particlesPeer reviewe

    Physically based alternative to the PE criterion for meteoroids

    Get PDF
    Meteoroids impacting the Earth atmosphere are commonly classified using the PE criterion. This criterion was introduced to support the identification of the fireball type by empirically linking its orbital origin and composition characteristics. Additionally, it is used as an indicator of the meteoroid tensile strength and its ability to penetrate the atmosphere. However, the level of classification accuracy of the PE criterion depends on the ability to constrain the value of the input data, retrieved from the fireball observation, required to derive the PE value. To overcome these uncertainties and achieve a greater classification detail, we propose a new formulation using scaling laws and dimensionless variables that groups all the input variables into two parameters that are directly obtained from the fireball observations. These two parameters, alpha and beta, represent the drag and the mass-loss rates along the luminous part of the trajectory, respectively, and are linked to the shape, strength, ablation efficiency, mineralogical nature of the projectile, and duration of the fireball. Thus, the new formulation relies on a physical basis. This work shows the mathematical equivalence between the PE criterion and the logarithm of 2 alpha beta under the same PE criterion assumptions. We demonstrate that log(2 alpha beta) offers a more general formulation that does not require any preliminary constraint on the meteor flight scenario and discuss the suitability of the new formulation for expanding the classification beyond fully disintegrating fireballs to larger impactors including meteorite-dropping fireballs. The reliability of the new formulation is validated using the Prairie Network meteor observations.Peer reviewe

    Energy of the future: nuclear VS other sources

    Get PDF
    Everybody knows that we live in a time of energy crisis. The World's Fossil Fuels are a finite resource that will be consumed within 500 years at present and projected future rates of consumption. In addition these are often accompanied by substantial pollutants and of course their major waste by-product, carbon-dioxide gas, is the major Greenhouse emission of concern. Of course every energy source has its advantages and disadvantages. The goal of the work was a comparing nuclear power with other energy sources and the proof that this type of energy is most beneficial to humanity. Objective was detection superiority of nuclear power over other types of energy sources on the following points: Cost; Efficiency; Safety; Environmental

    Determination of Strewn Fields for Meteorite Falls

    Full text link
    When an object enters the atmosphere it may be detected as a meteor. A bright meteor, called a fireball, may be a sign of a meteorite fall. Instrumentally observed meteorite falls provide unique opportunities to recover and analyse unweathered planetary samples supplemented with the knowledge on the Solar system orbit they had. To recover a meteorite from a fireball event, it is essential that recovery teams can be directed to a well-defined search area. Until recently, simulations showing the realistic mapping of a strewn field were difficult, in particular due to the large number of unknowns not directly retrieved from the fireball observations. These unknowns include the number of fragments and their aerodynamic properties, for which the masses of the fragments need to be assumed in a traditional approach. Here, we describe a new Monte Carlo model, which has already successfully assisted in several meteorite recoveries. The model is the first of its kind as it provides an adequate representation of the processes occurring during the luminous trajectory coupled together with the dark flight. In particular, the model comprises a novel approach to fragmentation modelling that leads to a realistic fragment mass distribution on the ground. We present strewn field simulations for the well-documented Koőice and Neuschwanstein meteorite falls, which demonstrate good matches to the observations. We foresee that our model can be used to revise the flux of extra-terrestrial matter onto the Earth, as it provides a possibility of estimating the terminal mass of meteorite fragments reaching the ground. © The Author(s) 2021.This work was supported, in part, by the Academy of Finland project no. 325806 (PlanetS). We acknowledge Hadrien Devillepoix and Morgan Hollis for their supportive and valuable comments that encouraged us to improve this paper by adding the section on the strewn field of the Neuschwanstein meteorite fall. We thank Eleanor Sansom for helping us to proof read this paper and for stimulating discussion. We thank Juraj Tóth for providing additional coordinates of the documented Kosˇice meteorite fragments in addition to those published in Tóth et al. (2015). We thank Dieter Heinlein and Jürgen Oberst for discussing the circumstances of the known Neuschwanstein meteorite finds and difficulties of the ground search. We thank Panu Lahtinen (Finnish Meteorological Institute) and Peter Vâlger (Swedish Institute of Space Physics) for their help with obtaining the actual atmospheric data for the studied fireball events and valuable discussions. We thank all members of the Finnish Fireball Network and acknowledge Ursa Astronomical Association for the support with the Network coordination. We acknowledge fruitful collaboration with the colleagues at the Ural Federal University in organizing the field trips and prompt meteorite recoveries based on provided strewn field maps. The research at the Ural Federal University was supported by the Russian Foundation for Basic Research, project nos. 18-08-00074 and 19-05-00028
    • …
    corecore