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Abstract. We numerically model the instability of viscous incompressible fluid flows caused 

by torsional oscillations of the inner sphere in a thin spherical layer with respect to the state of 

rest. We show that an increase in the frequency of torsional oscillations leads to a change in the 

mode of the instability, with a transition from secondary flows in the form of Taylor vortices to 

the structures, which were not previously observed. The revealed instability is found in the 

frequency range from 0.61 to 2.45 Hz or, if the wavelengths are taken relative to the layer 

thickness, from 0.67 to 1.33. 

1.  Introduction 

Flows caused by torsional oscillations can be used to determine rheological properties of fluids [1] and 

for intensifying filtration [2]. Periodic perturbations in the velocity may affect the transition to 

turbulence [3, 4]. Therefore it is important to have information on the stability limit and on the 

structure of secondary flows [1, 5]. 

A possible dependence of the secondary flow structures and the types of instability of the 

oscillation frequency is of special interest. Such dependence was revealed based on the measurements 

of velocity fields in a cylindrical thin layer β = (r2 – r1)/r1 = 0.087, where r1 and r2 are the inner and 

outer radii [1, 5]. The structures resembling Taylor and Görtler vortices were observed in the low and 

high frequency limits, respectively. Subsequently, there was a knowledge gap about the structures in 

the intermediate frequency range. In a spherical layer with β = 4.3 [6] at torsional oscillations of the 

inner sphere the structure of secondary flows in two-dimensional calculations remains constant over a 

wide range of frequency variations. At other values of β, the dependence of the instability type on the 

frequency in spherical layers has not been previously studied. 

The aim of this work is a numerical investigation of how the form of the secondary flow structures 

and stability limit depend on the frequency at torsional oscillations of the inner sphere with respect to 

the state of rest. To enable qualitative comparison of our results with [1, 5], we model a thin layer β= 

0.19 in which Taylor vortices appear at a constant rotational speed of the inner sphere at the stability 

limit [7]. 

2.  Methodology 
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An isothermal flow of a viscous incompressible fluid is described by the Navier–Stokes and continuity 

equations:  
2

rot grad rotrot , div 0.
2

p

t

 
       

  

U U
U U U U  

We use a spherical coordinate system with radial r, polar θ, and azimuthal φ directions. The no-slip 

and non percolation conditions at the boundaries have the form: uφ(r = r1,2) = Ω1,2(t)r1,2sinθ, ur(r = 

r1,2)= 0, uθ(r = r1,2) = 0, where 1 denotes conditions for the inner sphere and 2 – for the outer one. 

Here, U, p, and ρ are the velocity, pressure, and density of the fluid; uφ, ur, and uθ are the azimuthal, 

radial, and polar components of the velocity, respectively. Ωk is the angular rotational speed of the 

corresponding sphere and ν is the kinematic viscosity of the fluid in the layer. The rotational speed of 

the inner sphere varies periodically: Ω1(t) = Asin(2πft), where A and f are the modulation amplitude 

and the frequency. The outer sphere is immobile: Ω2 = 0. We have used the algorithm and numerical 

solution program [8] based on a finite-difference spatial discretization scheme for the Navier–Stokes 

equations and a semi-implicit Runge–Kutta scheme for integration with respect to time. The spatial 

discretization was performed with decreasing cell size near the boundaries (with respect to r) and the 

equatorial plane (with respect to θ). The ratio of the maximum to minimum cell size varied from 2 to 5 

with a total number of nodes up to 4.6x10
5
. The computations were performed at the following 

dimension parameters: ν = 5 × 10
–5

 m
2
/s, r1 = 0.126 m, r2 = 0.15 m, and f = 0.0682–4.363 Hz. In this 

case, thickness of the dynamic boundary layer is  
1 2 3( ) (1.91 15.3)10 mf      and minimum size 

δ corresponds to the seven nodes of the computational grid. The character of the flow depends on the 

quantities A, f, r1,r2 and ν and is determined by the three similarity parameters. These similarity 

parameters are relative layer thickness β, dimensionless wavelength L = λ/(r2 – r1), where λ = 2πδ, and 

the Reynolds number 2

1 1Re ( )( )Ar r   [6]. 

3.  Results and Discussion 

Oscillations of the inner sphere cause circulation in the meridional plane of the flow [6, 9]. The 

circulation is similar to that at a constant rotational speed [7], but periodically varies with a double 

modulation frequency. The evolution of such flow in time before it loses its stability has already been 

well studied (see e.g. [6]). The flow structure was determined by the form of the azimuthal vorticity 

component [10] in the meridional plane ωφ: 

1 1 rru u

rr r r


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Figure 1. Stability limit (solid line) and 

difference of oscillation phases Eφ and Eψ 

(dotted line). Shown here are levels ωφ [s
–1

] (-10 

< ωφ < 10). On the right: Taylor vortices at L = 

2, Re = 84.7, and Δωφ = 2 (squares).On the left: 

Görtler vortices at L = 0.5, Re = 105.9, and Δωφ 

= 0.5 (circle). The dotted lines for the levels ωφ 

correspond to the counterclockwise direction. 

The triangles show the instability at 

intermediate wavelengths.  
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The attenuation decrement of the azimuthal velocity in the radial direction increases with 

increasing f until loss of stability [9]. This leads to a decrease in Mout (i.e., in the amplitude of the 

friction torque transferred to the outer sphere). Near the stability limit (both before and after it), the 

flow is symmetric with respect to the rotation axis and equatorial plane. All flow parameters vary with 

frequencies f or 2f. Following [8], supercritical values of Re were used as initial conditions. The 

stability limit was determined by decreasing Re at f = const according to the form of the flow 

structure, magnitude of Mout, and ratio Eψ/Eφ (where 2E u    and 2 2( )rE u u   are the azimuthal 

and meridional components of the kinetic energy of the flow determined by integration over the whole 

volume of the spherical layer). 

Our results demonstrate that, after the loss of stability, unsteady toroidal structures are formed in 

the flow near the equatorial plane. Their characteristic size decreases with a decrease in L and the 

meridional circulation (MC) is pushed back to the poles. In the case of long waves (1.66 ≤ L≤ 4), the 

thoroughly studied Taylor vortices are formed at the stability limit. Their direction of rotation is 

opposite of the MC direction (Figure 1). The formation and decay of the vortices occur with 

hysteresis. At L≤ 2, the vortices exist during the whole oscillation cycle. At L = 4, the vortices are 

observed during almost the whole cycle, with the exception of two small intervals when Ω1(t) 

approaches A (0.075 < tf < 0.177 and 0.581 < tf < 0.676, where t is the time from the beginning of the 

oscillation cycle, the left boundaries of the intervals correspond to the decay of vortices, and the right 

boundaries correspond to the beginning of the formation). At L = 3, the vortices observed in the region 

of the maximum of Ω1(t) (0.12 < tf < 0.3 and 0.6 < tf < 0.8). The Taylor vortices change their 

configuration during the oscillation period: during the formation, they are expanded in the radial 

direction; by the instant of decay, the dimensions in r and θ are close. The stability limit for Taylor 

vortices has a minimum at 1.66 ≤ L ≤ 2 (Figure 1). Taylor vortices are also observed at L = 1.33. In 

this case, however, they are formed above the stability limit: the leftmost square in Figure 1 (Re = 

91.1) and squares in Figure 2. At the same time, the flow is stable at Re ≤ 80.9. 

 

 

Figure 2. Quantity Mout normalized by the 

liquid density as a function of the Re number 

at L = 1.33 (solid line) and 1.0 (dotted line). 

The dark symbols correspond to the stable 

flow and the light ones - to the unstable flow. 

The first and second bifurcations are shown 

by the arrows with a solid and dotted lines, 

respectively. 

 

Figure 3. Distribution of the levels ωφ [s
–1

] in the 

meridional plane of the flow at L = 1.33 and Re = 

80.8, –8 < ωφ < 8, and Δωφ = 1. tf = (a) 0, 0.5; (b) 

0.25, 0.75; (c) 0.28, 0.78; and (d) 0.3, 0.8. t is the 

time from the beginning of the oscillation cycle.  

 

 

Thus, at L = 1.33, the transition to Taylor vortices is preceded by another type of instability. This 

type of instability is observed in the interval of intermediate wavelengths 0.67 ≤ L ≤ 1.33 (triangles in 

Figures 1, 2).The structure of the secondary flow in this case is shown in Figure 3. The direction of the 
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vortex rotation near the equatorial plane coincides with the MC direction and the characteristic scale 

does not exceed half of the layer thickness. Let us consider the evolution of these structures in time. 

With an increase in Ω1(t) from 0 (Figure 3a) to A (Figure 3b), individual vortices are pushed back from 

the inner sphere and from the equatorial plane. Two vortices are formed. The vortex with the 

maximum ωφ is closer to the outer boundary. Later, with a decrease in Ω1(t) (Figure 3c), a rapid 

redistribution of ωφ occurs: the maximum is shifted to the inner sphere, then this maximum enhances 

(Figure 3d), and the flow returns to the initial state (Figure 3a). The minimum of the stability limit is 

observed near L = 1.33. At L < 1.33, an increase in Re is accompanied not by the transition to Taylor 

vortices but by the transition to a flow without the axial and equatorial symmetries.   At the same time, 

the direction of vortex rotation in the secondary flow remains the same.  

In the case of short waves (L = 0.5), at the stability limit after passing the extreme values (0.28 < tf 

< 0.31 and 0.78 < tf < 0.81), vortices with a characteristic scale that is much less than the layer 

thickness are formed near the inner sphere and equatorial plane (Figure 1). The typical size, rotation 

direction (opposite to the MC direction), and sharp change in the quantity ωφ near the inner sphere 

may imply that Görtler vortices caused by the instability of the dynamic boundary layer are observed 

in this case. Probably, at L = 0.67, the instability in the form of Görtler vortices precedes the instability 

at intermediate wavelengths (Figure 3), just as the instability at intermediate wavelengths precedes 

Taylor vortices at L = 1.33 (Figure 1). 

4.  Summary  

At torsional oscillations of the inner sphere in a thin layer β = 0.19, three types of instability are 

observed, and each type is associated with its own variation range of dimensionless wavelength L. The 

boundaries of the ranges can be determined by the position of maxima of both, the stability limit and 

the phase difference between Eφ and Eψ depending on L (Figure 1). The toroidal structures forming at 

the stability limit near the equatorial plane in the case of short (L ≤ 0.5) and long (L ≥ 1.67) waves 

qualitatively correspond to the results of experiments [1, 5]. The rotation direction for them is opposite 

to the MC direction. At the instability revealed at intermediate wavelengths (0.67 ≤ L ≤ 1.33 and 2.45 

≥ f ≥ 0.61 Hz), rotation directions of the vortices and MC coincide. The results of our calculations 

imply that further experimental verification of the revealed instability relies on measuring not only 

velocity fields (as it was done, e.g., in [1, 5]), but also friction torques.  

Acknowledgments 

This work was supported by the Russian Foundation for Basic Research project No. 16-05-00004 and 

18-08-00074. MG acknowledges, in part, support from the ERC Advanced Grant No. 320773. 

Research at the Ural Federal University is supported by the Act 211 of the Government of the Russian 

Federation, agreement No 02.A03.21.0006. We thank Dr. Laura K. Zschaechner (University of 

Helsinki, Finnish Center for Astronomy with ESO) for her help with language corrections. 

References 

[1] Fardin M, Perge C, Casanellas L, Hollis T, Taberlet N, Ortin J, Lerouge S and Manneville S 

2014 Rheol. Acta 53 885 

[2] Jaffrin M 2012 Ann. Rev. Fluid Mech. 44 77 

[3] Zhilenko D Yu and Krivonosova O E 2015 Tech. Phys. Lett. 41 5 

[4] Bountin D A and Maslov A A 2017 Tech. Phys. Lett. 43 623 

[5] Fardin M, Perge C, Taberlet N and Manneville S 2014 Phys. Rev.E 89 011001 

[6] Hollerbach R, Wiener R, Sullivan I, Donnelly R, and Barenghi C 2002 Phys. Fluids 14 4192 

[7] Belyaev Yu N and Yavorskaya I M 1980 Itogi Nauki Tekh. Ser. Mekh. Zhidk. Gaza 15 3 

[8] Nikitin N 2006 J. Comp. Phys. 217 759 

[9] Zhilenko D Yu and Krivonosova O E 2016 JETP Lett. 104 527 

[10] Landau L D and Lifshitz E M 1986 Course of Theoretical Physics, Vol. 6: Fluid Mechanics 

Pergamon, New York. 


