27 research outputs found

    Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water

    Get PDF
    We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a 22.5×55222.5\times552 kton⋅day\rm kton\cdot day exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water (22.5×2970kton⋅day22.5 \times 2970 \rm kton\cdot day) owing to the enhanced neutron tagging

    Performance of SK-Gd's upgraded real-time supernova monitoring system

    Get PDF
    Among multi-messenger observations of the next galactic core-collapse supernova, Super-Kamiokande (SK) plays a critical role in detecting the emitted supernova neutrinos, determining the direction to the supernova (SN), and notifying the astronomical community of these observations in advance of the optical signal. On 2022, SK has increased the gadolinium dissolved in its water target (SK-Gd) and has achieved a Gd concentration of 0.033%, resulting in enhanced neutron detection capability, which in turn enables more accurate determination of the supernova direction. Accordingly, SK-Gd's real-time supernova monitoring system (Abe te al. 2016b) has been upgraded. SK_SN Notice, a warning system that works together with this monitoring system, was released on December 13, 2021, and is available through GCN Notices (Barthelmy et al. 2000). When the monitoring system detects an SN-like burst of events, SK_SN Notice will automatically distribute an alarm with the reconstructed direction to the supernova candidate within a few minutes. In this paper, we present a systematic study of SK-Gd's response to a simulated galactic SN. Assuming a supernova situated at 10 kpc, neutrino fluxes from six supernova models are used to characterize SK-Gd's pointing accuracy using the same tools as the online monitoring system. The pointing accuracy is found to vary from 3-7∘ depending on the models. However, if the supernova is closer than 10 kpc, SK_SN Notice can issue an alarm with three-degree accuracy, which will benefit follow-up observations by optical telescopes with large fields of view

    Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector

    Get PDF
    We present the results of the charge ratio (R) and polarization (Pμ0) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R=1.32±0.02 (stat.+syst.) at EμcosθZenith=0.7+0.3−0.2 TeV, where Eμ is the muon energy and θZenith is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while this suggests a tension with the πK model of 1.9σ. We also measured the muon polarization at the production location to be Pμ0=0.52±0.02 (stat.+syst.) at the muon momentum of 0.9+0.6−0.1 TeV/c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5σ. This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV/c. These measurement results are useful to improve the atmospheric neutrino simulations

    New Methods and Simulations for Cosmogenic Induced Spallation Removal in Super-Kamiokande-IV

    No full text
    Radioactivity induced by cosmic muon spallation is a dominant source of backgrounds for O(10) \mathcal{O}(10)~MeV neutrino interactions in water Cherenkov detectors. In particular, it is crucial to reduce backgrounds to measure the solar neutrino spectrum and find neutrino interactions from distant supernovae. In this paper we introduce new techniques to locate muon-induced hadronic showers and efficiently reject spallation backgrounds. Applying these techniques to the solar neutrino analysis with an exposure of 2790×22.52790\times22.5~kton.day increases the signal efficiency by 12.6%12.6\%, approximately corresponding to an additional year of detector running. Furthermore, we present the first spallation simulation at SK, where we model hadronic interactions using FLUKA. The agreement between the isotope yields and shower pattern in this simulation and in the data gives confidence in the accuracy of this simulation, and thus opens the door to use it to optimize muon spallation removal in new data with gadolinium-enhanced neutron capture detection

    Search for Cosmic-ray Boosted Sub-GeV Dark Matter using Recoil Protons at Super-Kamiokande

    No full text
    We report a search for cosmic-ray boosted dark matter with protons using the 0.37 megaton×\timesyears data collected at Super-Kamiokande experiment during the 1996-2018 period (SKI-IV phase). We searched for an excess of proton recoils above the atmospheric neutrino background from the vicinity of the Galactic Center. No such excess is observed, and limits are calculated for two reference models of dark matter with either a constant interaction cross-section or through a scalar mediator. This is the first experimental search for boosted dark matter with hadrons using directional information. The results present the most stringent limits on cosmic-ray boosted dark matter and exclude the dark matter-nucleon elastic scattering cross-section between 10−33 cm−210^{-33}\text{ cm}^{-2} and 10−27 cm−210^{-27}\text{ cm}^{-2} for dark matter mass from 10 MeV/c2c^2 to 1 GeV/c2c^2

    Searching for neutrinos from solar flares across solar cycles 23 and 24 with the Super-Kamiokande detector

    No full text
    International audienceNeutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles 2323 and 2424, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we searched for neutrino interactions within narrow time windows coincident with γ\gamma-rays and soft X-rays recorded by satellites. In addition, we performed the first attempt to search for solar-flare neutrinos from solar flares on the invisible side of the Sun by using the emission time of coronal mass ejections (CMEs). By selecting twenty powerful solar flares above X5.0 on the visible side and eight CMEs whose emission speed exceeds 20002000km s−1\mathrm{km \, s^{-1}} on the invisible side from 1996 to 2018, we found two (six) neutrino events coincident with solar flares occurring on the visible (invisible) side of the Sun, with a typical background rate of 0.100.10 (0.620.62) events per flare in the MeV-GeV energy range. No significant solar-flare neutrino signal above the estimated background rate was observed. As a result we set the following upper limit on neutrino fluence at the Earth Φ<1.1×106\mathit{\Phi}<1.1\times10^{6}cm−2\mathrm{cm^{-2}} at the 90%90\% confidence level for the largest solar flare. The resulting fluence limits allow us to constrain some of the theoretical models for solar-flare neutrino emission

    New Methods and Simulations for Cosmogenic Induced Spallation Removal in Super-Kamiokande-IV

    No full text
    Radioactivity induced by cosmic muon spallation is a dominant source of backgrounds for O(10) \mathcal{O}(10)~MeV neutrino interactions in water Cherenkov detectors. In particular, it is crucial to reduce backgrounds to measure the solar neutrino spectrum and find neutrino interactions from distant supernovae. In this paper we introduce new techniques to locate muon-induced hadronic showers and efficiently reject spallation backgrounds. Applying these techniques to the solar neutrino analysis with an exposure of 2790×22.52790\times22.5~kton.day increases the signal efficiency by 12.6%12.6\%, approximately corresponding to an additional year of detector running. Furthermore, we present the first spallation simulation at SK, where we model hadronic interactions using FLUKA. The agreement between the isotope yields and shower pattern in this simulation and in the data gives confidence in the accuracy of this simulation, and thus opens the door to use it to optimize muon spallation removal in new data with gadolinium-enhanced neutron capture detection

    Search for proton decay via p→μ+K0p\rightarrow \mu^+K^0 in 0.37 megaton-years exposure of Super-Kamiokande

    Get PDF
    We searched for proton decay via p→μ+K0p\to\mu^+K^0 in 0.37 Mton⋅\cdotyears of data collected between 1996 and 2018 from the Super-Kamiokande water Cherenkov experiment. The selection criteria were defined separately for KS0K^0_S and KL0K^0_L channels. No significant event excess has been observed. As a result of this analysis, which extends the previous search by an additional 0.2 Mton⋅\cdotyears of exposure and uses an improved event reconstruction, we set a lower limit of 3.6×10333.6\times10^{33} years on the proton lifetime

    Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium loaded water

    No full text
    International audienceWe report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a 22.5×55222.5\times552kton⋅day\rm kton\cdot day exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water (22.5×2970kton⋅day22.5 \times 2970 \rm kton\cdot day) owing to the enhanced neutron tagging
    corecore