5 research outputs found

    Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements

    Get PDF
    A highly sensitive photonic sensor based on a porous silicon ring resonator was developed and experimentally characterized. The photonic sensing structure was fabricated by exploiting a porous silicon double layer, where the top layer of a low porosity was used to form photonic elements by e-beam lithography and the bottom layer of a high porosity was used to confine light in the vertical direction. The sensing performance of the ring resonator sensor based on porous silicon was compared for the different resonances within the analyzed wavelength range both for transverse-electric and transverse-magnetic polarizations. We determined that a sensitivity up to 439 nm/RIU for low refractive index changes can be achieved depending on the optical field distribution given by each resonance/polarization

    Label-free optical biosensing with slot-waveguides.

    Get PDF
    We demonstrate label-free molecule detection by using an integrated biosensor based on a Si3N4 /SiO2 slotwaveguide microring resonator. Bovine serum albumin (BSA) and anti-BSA molecular binding events on the sensor surface are monitored through the measurement of resonant wavelength shifts with varying biomolecule concentrations. The biosensor exhibited sensitivities of 1.8 and 3.2 nm/ _ng/mm2_ for the detection of anti-BSA and BSA, respectively. The estimated detection limits are 28 and 16 pg/mm2 for anti-BSA and BSA, respectively, limited by wavelength resolutio

    Ultrahigh Sensitivity Slot-Waveguide Biosensor on a Highly Integrated Chip for Simultaneous Diagnosis of Multiple

    Get PDF
    SABIO is a multidisciplinary project involving the emerging fields of micro-nanotechnology, photonics, fluidics and bio-chemistry, targeting a contribution to the development of intelligent diagnostic equipment through the demonstration of a compact polymer based and silicon-based CMOS-compatible micro-nano system. It integrates optical biosensors for label-free biomolecular recognition based on a novel photonic structure named slot-waveguide with immobilized bimolecular receptors on its surface. The slot-waveguides provide high optical intensity in a sub wavelength-size low refractive index region (slot-region) sandwiched between two high refractive index strips (rails) [1] leading to an enhanced interaction between the optical probe and biomolecular complexes (antibody-antigen). As such a biosensor is predicted to exhibit a surface concentration detection-limit lower than 1 pg/mm2, state-of-the-art in label free integrated optical biosensors, as well as the possibility of multiplexed assay, which, together with reduced reaction volumes, leads to the ability to perform rapid multi-analytesensing and comprehensive tests. This offers the further advantageous possibility of assaying several parameters simultaneously and consequently, statistical analysis of these results can potentially increase the reliability and reduce the measurement uncertainty of a diagnostic over single-parameter assays. In addition, the SABIO micro-nano system device applied to its novel protein-based diagnostic technology has the potential to be fast and easy to use, making routine screening or monitoring of diseases more cost-effective

    Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam

    Get PDF
    [EN] We report on the optomechanical properties of a breathing mechanical mode oscillating at 5.5 GHz in a 1D corrugated Si nanobeam. This mode has an experimental single-particle optomechanical coupling rate of vertical bar g(o, OM)vertical bar= 1.8 MHz (vertical bar g(o, OM)vertical bar/2 pi=0.3 MHz) and shows strong dynamical back-action effects at room temperature. The geometrical flexibility of the unit-cell would lend itself to further engineering of the cavity region to localize the mode within the full phononic band-gap present at 4 GHz while keeping high go, OM values. This would lead to longer lifetimes at cryogenic temperatures, due to the suppression of acoustic leakage.This work was supported by the EU through the FP7 project TAILPHOX (ICT-FP7-233883) and the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish projects TAPHOR (MAT2012-31392). D.N-U and J.G-B acknowledge support in the form of postdoctoral fellowships from the Catalan (Beatriu de Pinos) and the Spanish (Juan de la Cierva) governments, respectively.Navarro-Urrios, D.; Gomis-Bresco, J.; El-Jallal, S.; Oudich, M.; Pitanti, A.; Capuj, N.; Tredicucci, A.... (2014). Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam. AIP Advances. 4(12). https://doi.org/10.1063/1.4902171S412Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. (Eds.). (2014). Cavity Optomechanics. doi:10.1007/978-3-642-55312-7Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., & Vahala, K. J. (2005). Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters, 95(3). doi:10.1103/physrevlett.95.033901Hossein-Zadeh, M., Rokhsari, H., Hajimiri, A., & Vahala, K. J. (2006). Characterization of a radiation-pressure-driven micromechanical oscillator. Physical Review A, 74(2). doi:10.1103/physreva.74.023813Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524Pennec, Y., Laude, V., Papanikolaou, N., Djafari-Rouhani, B., Oudich, M., El Jallal, S., … Martínez, A. (2014). Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 3(6). doi:10.1515/nanoph-2014-0004Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461Safavi-Naeini, A. H., Alegre, T. P. M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., … Painter, O. (2011). Electromagnetically induced transparency and slow light with optomechanics. Nature, 472(7341), 69-73. doi:10.1038/nature09933Pennec, Y., Rouhani, B. D., Li, C., Escalante, J. M., Martinez, A., Benchabane, S., … Papanikolaou, N. (2011). Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 1(4), 041901. doi:10.1063/1.3675799Gomis-Bresco, J., Navarro-Urrios, D., Oudich, M., El-Jallal, S., Griol, A., Puerto, D., … Torres, C. M. S. (2014). A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 5(1). doi:10.1038/ncomms5452Oudich, M., El-Jallal, S., Pennec, Y., Djafari-Rouhani, B., Gomis-Bresco, J., Navarro-Urrios, D., … Makhoute, A. (2014). Optomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 89(24). doi:10.1103/physrevb.89.245122Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., Chan, J., Gröblacher, S., & Painter, O. (2014). Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity. Physical Review Letters, 112(15). doi:10.1103/physrevlett.112.153603Johnson, S. G., Ibanescu, M., Skorobogatiy, M. A., Weisberg, O., Joannopoulos, J. D., & Fink, Y. (2002). Perturbation theory for Maxwell’s equations with shifting material boundaries. Physical Review E, 65(6). doi:10.1103/physreve.65.066611Navarro-Urrios, D., Gomis-Bresco, J., Capuj, N. E., Alzina, F., Griol, A., Puerto, D., … Sotomayor-Torres, C. M. (2014). Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics, 116(9), 093506. doi:10.1063/1.4894623Barclay, P. E., Srinivasan, K., & Painter, O. (2005). Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Optics Express, 13(3), 801. doi:10.1364/opex.13.000801J. Chan, Ph.D. thesis, California Institute of Technology, Los Angeles, 2014.Gorodetsky, M. L., Schliesser, A., Anetsberger, G., Deleglise, S., & Kippenberg, T. J. (2010). Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Optics Express, 18(22), 23236. doi:10.1364/oe.18.02323

    Testing Optomechanical Microwave Oscillators for SATCOM Application

    Full text link
    [EN] The realization of photonic microwave oscillators using optomechanical cavities has recently become a reality. By pumping the cavity with a blue-detuned laser, the so-called phonon lasing regime - in which a mechanical resonance is amplified beyond losses - can be reached and the input signal gets modulated by highly-coherent tones at integer multiples of the mechanical resonance. Implementing optomechanical cavities on released films with high index of refraction can lead to optical modes at telecom wavelengths and mechanical resonances in the GHz scale, resulting in highly-stable signals in the microwave domain upon photodetection. Owing to the extreme compactness of such cavities, application in satellite communications (SATCOM) seems highly appropriate, but no experiments have been reported so far. In this paper, an optomechanical microwave oscillator (OMO) built on a micron-scale silicon optomechanical crystal cavity is characterized and tested in a real SATCOM testbed. Using a blue-detuned laser, the OMO is driven into a phonon lasing state where multiple harmonics are generated, reaching tones up to 20 GHz. Under this regime, its practical applicability, remarkably addressing its performance as a photonic local oscillator, has been validated. The results, in addition with the advantages of extreme compactness and silicon-technology compatibility, make OMOs very promising candidates to build ultra-low weight photonics-based microwave oscillators for SATCOM applications.This work was supported in part by the H2020 Future and Emerging Technologies program under Grant PHENOMEN 713450, SIOMO 945915, and OPTIMA 730149, in part by the Spanish State Research Agency underGrants PGC2018-094490-BC21 and ICTS-2017-28-UPV-9, and in part by Generalitat Valenciana under Grants BEST/2020/178, PROMETEO/2019/123, IDIFEDER/2020/041, and IDIFEDER/2021/061.Mercadé, L.; Rico, E.; Ruiz-Garnica, J.; Gómez, JC.; Griol Barres, A.; Piqueras, MA.; Martínez, A.... (2022). Testing Optomechanical Microwave Oscillators for SATCOM Application. Journal of Lightwave Technology. 40(14):4539-4547. https://doi.org/10.1109/JLT.2022.316597445394547401
    corecore