80 research outputs found

    High frequency mechanical excitation of a silicon nanostring with piezoelectric aluminum nitride layers

    Get PDF
    A strong trend for quantum based technologies and applications follows the avenue of combining different platforms to exploit their complementary technological and functional advantages. Micro and nano-mechanical devices are particularly suitable for hybrid integration due to the easiness of fabrication at multi-scales and their pervasive coupling with electrons and photons. Here, we report on a nanomechanical technological platform where a silicon chip is combined with an aluminum nitride layer. Exploiting the AlN piezoelectricity, Surface Acoustic Waves are injected in the Si layer where the material has been localy patterned and etched to form a suspended nanostring. Characterizing the nanostring vertical displacement induced by the SAW, we found an external excitation peak efficiency in excess of 500 pm/V at 1 GHz mechanical frequency. Exploiting the long term expertise in silicon photonic and electronic devices as well as the SAW robustness and versatility, our technological platform represents a strong candidate for hybrid quantum systems

    A Conversational Academic Assistant for the Interaction in Virtual Worlds

    Get PDF
    Proceedings of: Forth International Workshop on User-Centric Technologies and applications (CONTEXTS 2010). Valencia, 07-10 September , 2010.The current interest and extension of social networking are rapidly introducing a large number of applications that originate new communication and interaction forms among their users. Social networks and virtual worlds, thus represent a perfect environment for interacting with applications that use multimodal information and are able to adapt to the specific characteristics and preferences of each user. As an example of this application, in this paper we present an example of the integration of conversational agents in social networks, describing the development of a conversational avatar that provides academic information in the virtual world of Second Life. For its implementation techniques from Speech Technologies and Natural Language Processing have been used to allow a more natural interaction with the system using voice.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255, and DPS2008-07029-C02-02.Publicad

    Exploiting Cherenkov Radiation With BGO-Based Metascintillators

    Get PDF
    [EN] In time-of-flight positron emission tomography (TOF-PET), the timing capabilities of the scintillation-based detector play an important role. An approach for fast timing is using the so-called metascintillators, which combine two materials leading to the synergistic blending of their favorable characteristics. An added effect for BGO-based metascintillators is taking advantage of better transportation of Cherenkov photons through UV-transparent materials such as plastic (type EJ232). To prove this, we use an optimized Coincidence Time Resolution (CTR) setup based on electronic boards with two output signals (timing and energy) and near-ultraviolet (NUV) and vacuum-ultraviolet (VUV) silicon photomultipliers (SiPMs) from Fondazione Bruno Kessler (FBK), along with different coupling materials. As a reference detector, we employed a 3x3x5-mm(3) LYSO:Ce,Ca crystal pixel coupled with optical grease to an NUV-HD SiPM. The evaluation is based on low-threshold rise time, energy and time of arrival of event datasets. Timing results of a BGO/EJ232 3x3x15-mm(3) metapixel show detector time resolutions (DTRs) of 159 ps for the full photopeak. We demonstrate the possibility of event discrimination using subsets with different DTR from the rise time distributions (RTDs). Finally, we present the synergistic capability of metascintillators to enhance Cherenkov photons detection when used along with VUV-sensitive SiPMs.This work was supported in part by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (4D-PET) under Grant 695536, and in part by the Brazilian Funding Agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under Grant 202378/2020-9.Latella, R.; González Martínez, AJ.; Bonifacio, DAB.; Kovylina-Zabyako, M.; Griol Barres, A.; Benlloch Baviera, JM.; Lecoq, P.... (2023). Exploiting Cherenkov Radiation With BGO-Based Metascintillators. IEEE Transactions on Radiation and Plasma Medical Sciences. 7(8):810-818. https://doi.org/10.1109/TRPMS.2023.33105818108187

    Transparent nanometric organic luminescent films as UV-active components in photonic structures

    Get PDF
    A new kind of visible-blind organic thin-film material, consisting of a polymeric matrix with a high concentration of embedded 3-hydroxyflavone (3HF) dye molecules, that absorbs UV light and emits green light is presented. The thin films can be grown on sensitive substrates, including flexible polymers and paper. Their suitability as photonic active components photonic devices is demonstrated. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements

    Get PDF
    A highly sensitive photonic sensor based on a porous silicon ring resonator was developed and experimentally characterized. The photonic sensing structure was fabricated by exploiting a porous silicon double layer, where the top layer of a low porosity was used to form photonic elements by e-beam lithography and the bottom layer of a high porosity was used to confine light in the vertical direction. The sensing performance of the ring resonator sensor based on porous silicon was compared for the different resonances within the analyzed wavelength range both for transverse-electric and transverse-magnetic polarizations. We determined that a sensitivity up to 439 nm/RIU for low refractive index changes can be achieved depending on the optical field distribution given by each resonance/polarization

    Label-free optical biosensing with slot-waveguides.

    Get PDF
    We demonstrate label-free molecule detection by using an integrated biosensor based on a Si3N4 /SiO2 slotwaveguide microring resonator. Bovine serum albumin (BSA) and anti-BSA molecular binding events on the sensor surface are monitored through the measurement of resonant wavelength shifts with varying biomolecule concentrations. The biosensor exhibited sensitivities of 1.8 and 3.2 nm/ _ng/mm2_ for the detection of anti-BSA and BSA, respectively. The estimated detection limits are 28 and 16 pg/mm2 for anti-BSA and BSA, respectively, limited by wavelength resolutio

    Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors

    Full text link
    [EN] Over the recent years, subwavelength grating (SWG) structures have increasingly attracted attention in the area of evanescent-field photonic sensors. In this Letter, for the first time to the best of our knowledge, we demonstrate experimentally the real-time refractive index (RI) sensing using the SWG bimodal interferometric structures. Two different configurations are considered to compare the effect of the nonlinear phase shift, obtained between the two first transverse electromagnetic propagating modes, in the measured bulk sensitivity. Very high experimental values up to 2270 nm/RIU are reached, which perfectly match the numerical simulations and significantly enhance other existing SWG and spectralbased sensors. By measuring the spectral shift, the obtained experimental sensitivity does not depend on the sensor length. As a result, a highly sensitive and compact singlechannel interferometer is experimentally validated for refractive index sensing, thus opening new paths in the field of optical integrated sensors.European Commission (PHC-634013 PHOCNOSIS project); Spanish Government (TEC2015-63838-C3-1-R-OPTONANOSENS project); Universitat Politecnica de Valencia (grant PAID 01-18).Torrijos-Morán, L.; Griol Barres, A.; García-Rupérez, J. (2019). Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors. Optics Letters. 44(19):4702-4705. https://doi.org/10.1364/OL.44.004702S470247054419Cheben, P., Xu, D.-X., Janz, S., & Densmore, A. (2006). Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Optics Express, 14(11), 4695. doi:10.1364/oe.14.004695Schmid, J. H., Cheben, P., Janz, S., Lapointe, J., Post, E., & Xu, D.-X. (2007). Gradient-index antireflective subwavelength structures for planar waveguide facets. Optics Letters, 32(13), 1794. doi:10.1364/ol.32.001794Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., … Hall, T. J. (2010). Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Optics Express, 18(19), 20251. doi:10.1364/oe.18.020251Halir, R., Bock, P. J., Cheben, P., Ortega‐Moñux, A., Alonso‐Ramos, C., Schmid, J. H., … Janz, S. (2014). Waveguide sub‐wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 9(1), 25-49. doi:10.1002/lpor.201400083Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., … Schmid, J. H. (2014). Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Optics Letters, 39(15), 4442. doi:10.1364/ol.39.004442Donzella, V., Sherwali, A., Flueckiger, J., Grist, S. M., Fard, S. T., & Chrostowski, L. (2015). Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Optics Express, 23(4), 4791. doi:10.1364/oe.23.004791Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672Yan, H., Huang, L., Xu, X., Chakravarty, S., Tang, N., Tian, H., & Chen, R. T. (2016). Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Optics Express, 24(26), 29724. doi:10.1364/oe.24.029724Huang, L., Yan, H., Xu, X., Chakravarty, S., Tang, N., Tian, H., & Chen, R. T. (2017). Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. Optics Express, 25(9), 10527. doi:10.1364/oe.25.010527Benedikovic, D., Berciano, M., Alonso-Ramos, C., Le Roux, X., Cassan, E., Marris-Morini, D., & Vivien, L. (2017). Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Optics Express, 25(16), 19468. doi:10.1364/oe.25.019468Halir, R., Cheben, P., Luque‐González, J. M., Sarmiento‐Merenguel, J. D., Schmid, J. H., Wangüemert‐Pérez, G., … Molina‐Fernández, Í. (2016). Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial. Laser & Photonics Reviews, 10(6), 1039-1046. doi:10.1002/lpor.201600213Luque-González, J. M., Herrero-Bermello, A., Ortega-Moñux, A., Molina-Fernández, Í., Velasco, A. V., Cheben, P., … Halir, R. (2018). Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Optics Letters, 43(19), 4691. doi:10.1364/ol.43.004691Jahani, S., Kim, S., Atkinson, J., Wirth, J. C., Kalhor, F., Noman, A. A., … Jacob, Z. (2018). Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nature Communications, 9(1). doi:10.1038/s41467-018-04276-8Torrijos-Morán, L., & García-Rupérez, J. (2019). Single-channel bimodal interferometric sensor using subwavelength structures. Optics Express, 27(6), 8168. doi:10.1364/oe.27.008168Levy, R., & Ruschin, S. (2009). Design of a Single-Channel Modal Interferometer Waveguide Sensor. IEEE Sensors Journal, 9(2), 146-1. doi:10.1109/jsen.2008.2011075Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734Kozma, P., Kehl, F., Ehrentreich-Förster, E., Stamm, C., & Bier, F. F. (2014). Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosensors and Bioelectronics, 58, 287-307. doi:10.1016/j.bios.2014.02.049Levy, R., & Ruschin, S. (2008). Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 16(25), 20516. doi:10.1364/oe.16.020516García-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276Zhang, W., Serna, S., Le Roux, X., Vivien, L., & Cassan, E. (2016). Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Optics Letters, 41(3), 532. doi:10.1364/ol.41.000532Di Falco, A., O’Faolain, L., & Krauss, T. F. (2009). Chemical sensing in slotted photonic crystal heterostructure cavities. Applied Physics Letters, 94(6), 063503. doi:10.1063/1.3079671Molina-Fernández, Í., Leuermann, J., Ortega-Moñux, A., Wangüemert-Pérez, J. G., & Halir, R. (2019). Fundamental limit of detection of photonic biosensors with coherent phase read-out. Optics Express, 27(9), 12616. doi:10.1364/oe.27.01261

    The Epidermal Growth Factor Receptor Is Involved in Angiotensin II But Not Aldosterone/Salt-Induced Cardiac Remodelling

    Get PDF
    Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling

    Ultrahigh Sensitivity Slot-Waveguide Biosensor on a Highly Integrated Chip for Simultaneous Diagnosis of Multiple

    Get PDF
    SABIO is a multidisciplinary project involving the emerging fields of micro-nanotechnology, photonics, fluidics and bio-chemistry, targeting a contribution to the development of intelligent diagnostic equipment through the demonstration of a compact polymer based and silicon-based CMOS-compatible micro-nano system. It integrates optical biosensors for label-free biomolecular recognition based on a novel photonic structure named slot-waveguide with immobilized bimolecular receptors on its surface. The slot-waveguides provide high optical intensity in a sub wavelength-size low refractive index region (slot-region) sandwiched between two high refractive index strips (rails) [1] leading to an enhanced interaction between the optical probe and biomolecular complexes (antibody-antigen). As such a biosensor is predicted to exhibit a surface concentration detection-limit lower than 1 pg/mm2, state-of-the-art in label free integrated optical biosensors, as well as the possibility of multiplexed assay, which, together with reduced reaction volumes, leads to the ability to perform rapid multi-analytesensing and comprehensive tests. This offers the further advantageous possibility of assaying several parameters simultaneously and consequently, statistical analysis of these results can potentially increase the reliability and reduce the measurement uncertainty of a diagnostic over single-parameter assays. In addition, the SABIO micro-nano system device applied to its novel protein-based diagnostic technology has the potential to be fast and easy to use, making routine screening or monitoring of diseases more cost-effective
    corecore