87 research outputs found

    A Diverse Array of Fluvial Depositional Systems in Arabia Terra: Evidence for mid‐Noachian to Early Hesperian Rivers on Mars

    Get PDF
    Branching to sinuous ridges systems, 100s of kilometers in length and comprising layered strata, are present across much of Arabia Terra, Mars. These ridges are interpreted as depositional fluvial channels, now preserved as inverted topography. Here we use high resolution image and topographic datasets to investigate the morphology of these depositional systems and show key examples of their relationships to associated fluvial landforms. The inverted channel systems likely comprise indurated conglomerate, sandstone, and mudstone bodies, which form a multi‐storey channel stratigraphy. The channel systems intersect local basins and indurated sedimentary mounds, that we interpret as paleolake deposits. Some inverted channels are located within erosional valley networks, which have regional and local catchments. Inverted channels are typically found in downslope sections of valley networks, sometimes at the margins of basins, and numerous different transition morphologies are observed. These relationships indicate a complex history of erosion and deposition, possibly controlled by changes in water or sediment flux, or base level variation. Other inverted channel systems have no clear preserved catchment; likely lost due to regional resurfacing of upland areas. Sediment may have been transported through Arabia Terra towards the dichotomy and stored in local and regional‐scale basins. Regional stratigraphic relations suggest these systems were active between the mid‐Noachian and early Hesperian. The morphology of these systems is supportive of an early Mars climate which was characterized by prolonged precipitation and runoff

    Recapping and mite removal behaviour in Cuba: home to the world's largest population of Varroa-resistant European honeybees

    Get PDF
    The Varroa destructor ectoparasitic mite has spread globally and in conjunction with Deformed Wing Virus has killed millions of honeybee (Apis mellifera) colonies. This has forced Northern hemisphere beekeepers into using miticides to avoid mass colony losses. However, in many Southern hemisphere countries widespread treatment did not occur since miticides were prohibitively expensive, or a centralised choice was made not to treat, both allowing natural selection to act. The Varroa mite initially caused high losses before mite-resistance appeared in the honeybee populations. Initially, mite-resistance was only associated with African and Africanised honeybees. Although recently, several isolated mite-resistant European honeybee populations have appeared. Here we studied the mite-resistance in Cuba and found high rates of recapping of infested worker cells (77%), high removal of mites (80%) and corresponding low mite fertility (r = 0.77). These are all traits found in all naturally evolved Varroa-resistant populations. We can confirm Cuba has the world's largest European mite-resistant population with 220,000 colonies that have been treatment-free for over two decades and illustrating the power of natural selection. Cuban honeybees are also highly productive, 40-70 kg of honey produced annually, and are mild mannered. Cuba is an excellent example of what is possible when honeybees are allowed to adapt naturally to Varroa with minimal human interference. [Abstract copyright: © 2022. The Author(s).

    Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator

    Get PDF
    JKH is funded by a Birkbeck University of London Graduate Teaching Assistantship. CRC is funded by a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The Aberystwyth research leading to these results has been funded by the UK Space Agency, ExoMars Panoramic Camera (PanCam) Grant Nos. ST/G003114/1, ST/I002758/1, STL001454/1, and the UK Space Agency CREST2 PanCam-2020 research Grant No. ST/L00500X/1. Additional Aberystwyth funding has come from The European Community’s Seventh Framework Programme (FP7/2007-2013), Grant Agreement Nos. 21881 PRoVisG, 241523 PRoViScout, and Grant Agreement No. 312377 PRoViDE. PMG is funded by a UK Space Agency Aurora Fellowship (grants ST/J005215/1 and ST/L00254X/1).A major scientific goal of the European Space Agency’s ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440–1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic–neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400–1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350–2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral–acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.Publisher PDFPeer reviewe

    Burstiness and tie activation strategies in time-varying social networks

    Get PDF
    The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks' evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes

    UK Space Agency ``Mars Utah Rover Field Investigation 2016'' (MURFI 2016): Overview of Mission, Aims, and Progress

    Get PDF
    The Mars Utah Rover Field Investigation “MURFI 2016” is a Mars Rover field analogue mission run by the UK Space Agency (UKSA) in collaboration with the Canadian Space Agency (CSA). MURFI 2016 took place between 22nd October and 13th November 2016 and consisted of a field team including an instrumented Rover platform, at the field site near Hanksville (Utah, USA), and an ‘Operations Team’ based in the Mission Control Centre (MOC) at the Harwell Campus near Oxford in the UK.The field site was chosen based on the collaboration with the CSA and its Mars-like local geology. It was used by the CSA in 2015 for Mars Rover trials, and in 2016, several teams used the site, each with their own designated working areas. The two main aims of MURFI 2016 were (i) to develop logistical and leadership experience in running field trials within the UKSA, and (ii) to provide members of the Mars Science community with Rover Operations experience, and hence to build expertise that could be used in the 2020 ExoMars Rover mission, or other future Rover missions. Because MURFI 2016 was the first solely UKSA-led Rover analogue trial, the most important objective was to learn how to best implement Rover trials in general. This included aspects of planning, logistics, field safety, MOC setup and support, communications, person management and science team development. Some aspects were based on past experience from previous trials but the focus was on ‘learning through experience’ - especially in terms of the Operations Team, who each took on a variety of roles during the mission

    The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

    Get PDF
    The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials

    Enhanced case management can be delivered for patients with EVD in Africa : experience from a UK military ebola treatment centre in Sierra Leone

    Get PDF
    TF is funded by the Wellcome Trust (104480/Z/14/Z) and the UK Ministry of Defence.Background:  Limited data exist describing supportive care management, laboratory abnormalities and outcomes in patients with EVD (Ebola virus disease) in West Africa. We report data which constitute the first description of the provision of enhanced EVD case management protocols in a West African setting. Methods:   Demographic, clinical and laboratory data were collected by retrospective review of clinical and laboratory records of patients with confirmed EVD admitted between 5 November 2014 and 30 June 2015. Results:  A total of 44 EVD cases were admitted (median age 37 years (range 17-63), 32/44 healthcare workers), and excluding those evacuated, the case fatality rate was 49% (95% CI 33-65%). No pregnant women were admitted. At admission 9/44 had stage 1 disease (fever and constitutional symptoms only), 12/44 stage 2 disease (presence of diarrhoea and/or vomiting) and 23/44 had stage 3 disease (presence of diarrhoea and/or vomiting with organ failure), with case fatality rates of 11% (95% CI 1-58%), 27% (95% CI 6-61%), and 70% (95% CI 47-87%) respectively (p=0.009). Haemorrhage occurred in 17/41 (41%) patients. The majority (21/40) of patients had hypokalaemia with hyperkalaemia occurring in 12/40 patients. Acute Kidney Injury (AKI) occurred in 20/40 patients, with 14/20 (70%, 95% CI 46-88%) dying, compared to 5/20 (25%, 95% CI 9-49%) dying who did not have AKI (p=0.01). Ebola virus (EBOV) PCR cycle threshold value at baseline was mean 20.3 (SD 4.3) in fatal cases and 24.8 (SD 5.5) in survivors (p=0.007). Mean National Early Warning Score (NEWS) at admission was 5.5 (SD 4.4) in fatal cases and 3.0 (SD 1.9) in survivors (p=0.02). Central venous catheters were placed in 37/41 patients and intravenous fluid administered to 40/41 patients (median duration of 5 days). Faecal management systems were inserted in 21/41 patients, urinary catheters placed in 27/41 and blood component therapy administered to 20/41 patients. Conclusions:  EVD is commonly associated life-threatening electrolyte imbalance and organ dysfunction. We believe that the enhanced levels of protocolized care, scale and range of medical interventions we report, offers a blueprint for the future management of EVD in resource-limited settings.Publisher PDFPeer reviewe

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio
    • 

    corecore