26 research outputs found

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 ÎĽm) to thinned sensors (about 240 ÎĽm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 Ă— 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 ÎĽm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC

    Get PDF
    The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip

    The CMS Phase-1 pixel detector upgrade

    Get PDF
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.Peer reviewe

    Traumatologie et accidentologie du kitesurf en Bretagne

    No full text
    BREST-BU MĂ©decine-Odontologie (290192102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Out-of-Hospital Cardiac Arrest Detection by Machine Learning Based on the Phonetic Characteristics of the Caller’s Voice

    No full text
    International audienceINTRODUCTION: Out-of-hospital cardiac arrest (OHCA) is a major public health issue. The prognosis is closely related to the time from collapse to return of spontaneous circulation. Resuscitation efforts are frequently initiated at the request of emergency call center professionals who are specifically trained to identify critical conditions over the phone. However, 25% of OHCAs are not recognized during the first call. Therefore, it would be interesting to develop automated computer systems to recognize OHCA on the phone. The aim of this study was to build and evaluate machine learning models for OHCA recognition based on the phonetic characteristics of the caller’s voice. METHODS: All patients for whom a call was done to the emergency call center of Rennes, France, between 01/01/2017 and 01/01/2019 were eligible. The predicted variable was OHCA presence. Predicting variables were collected by computer-automatized phonetic analysis of the call. They were based on the following voice parameters: fundamental frequency, formants, intensity, jitter, shimmer, harmonic to noise ratio, number of voice breaks, and number of periods. Three models were generated using binary logistic regression, random forest, and neural network. The area under the curve (AUC) was the primary outcome used to evaluate each model performance. RESULTS: 820 patients were included in the study. The best model to predict OHCA was random forest (AUC=74.9, 95% CI=67.4-82.4). CONCLUSION: Machine learning models based on the acoustic characteristics of the caller’s voice can recognize OHCA. The integration of the acoustic parameters identified in this study will help to design decision-making support systems to improve OHCA detection over the phone

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    No full text
    corecore