92 research outputs found

    Hybrid Lattice-Boltzmann-Potential Flow Simulations of Turbulent Flow around Submerged Structures

    Get PDF
    We report on the development and validation of a 3D hybrid Lattice Boltzmann Model (LBM), with Large Eddy Simulation (LES), to simulate the interactions of incompressible turbulent flows with ocean structures. The LBM is based on a perturbation method, in which the velocity and pressure are expressed as the sum of an inviscid flow and a viscous perturbation. The far- to near-field flow is assumed to be inviscid and represented by potential flow theory, which can be efficiently modeled with a Boundary Element Method (BEM). The near-field perturbation flow around structures is modeled by the Navier–Stokes (NS) equations, based on a Lattice Boltzmann Method (LBM) with a Large Eddy Simulation (LES) of the turbulence. In the paper, we present the hybrid model formulation, in which a modified LBM collision operator is introduced to simulate the viscous perturbation flow, resulting in a novel perturbation LBM (pLBM) approach. The pLBM is then extended for the simulation of turbulence using the LES and a wall model to represent the viscous/turbulent sub-layer near solid boundaries. The hybrid model is first validated by simulating turbulent flows over a flat plate, for moderate to large Reynolds number values, Re ∈ [3.7×104;1.2×106]; the plate friction coefficient and near-field turbulence properties computed with the model are found to agree well with both experiments and direct NS simulations. We then simulate the flow past a NACA-0012 foil using a regular LBM-LES and the new hybrid pLBM-LES models with the wall model, for Re = 1.44 x 106. A good agreement is found for the computed lift and drag forces, and pressure distribution on the foil, with experiments and results of other numerical methods. Results obtained with the pLBM model are either nearly identical or slightly improved, relative to those of the standard LBM, but are obtained in a significantly smaller computational domain and hence at a much reduced computational cost, thus demonstrating the benefits of the new hybrid approach

    STORMTOOLS: Coastal Environmental Risk Index (CERI)

    Get PDF
    One of the challenges facing coastal zone managers and municipal planners is the development of an objective, quantitative assessment of the risk to structures, infrastructure, and public safety that coastal communities face from storm surge in the presence of changing climatic conditions, particularly sea level rise and coastal erosion. Here we use state of the art modeling tool (ADCIRC and STWAVE) to predict storm surge and wave, combined with shoreline change maps (erosion), and damage functions to construct a Coastal Environmental Risk Index (CERI). Access to the state emergency data base (E-911) provides information on structure characteristics and the ability to perform analyses for individual structures. CERI has been designed as an on line Geographic Information System (GIS) based tool, and hence is fully compatible with current flooding maps, including those from FEMA. The basic framework and associated GIS methods can be readily applied to any coastal area. The approach can be used by local and state planners to objectively evaluate different policy options for effectiveness and cost/benefit. In this study, CERI is applied to RI two communities; Charlestown representing a typical coastal barrier system directly exposed to ocean waves and high erosion rates, with predominantly low density single family residences and Warwick located within Narragansett Bay, with more limited wave exposure, lower erosion rates, and higher residential housing density. Results of these applications are highlighted herein

    Effect of grain boundary misorientation and carbide precipitation on damage initiation: a coupled crystal plasticity and phase field damage study

    Get PDF
    A coupled crystal plasticity phase field damage framework has been developed and applied to modelling damage initiation. A novel implementation of a grain misorientation angle dependent critical energy release rate has been used to determine a reduction in the local critical energy release rate resulting from the effects of intergranular carbide precipitates and grain boundary misorientation. When applied to a notched high temperature 316H austenitic stainless steel specimen, a good correlation between experimental results and void nucleation statistics for a misorientation dependent critical energy release rate was obtained. This has been evaluated through comparison with correlative electron microscopy experimental results, showing the potential of phase field models in the area of early damage formation. Additions to include plastic strain and creep deformation effects were made, and comparisons were drawn with experimental data to investigate the contributions of microstructural geometry properties such as the difference in and average values of Schmid factors across grain boundaries, as well as the loading direction stress and dislocation densities. The limitations to this approach and opportunities for further work in this area are discussed, with specific interest in the need for additional literature data characterising grain boundary carbide precipitation and cavity nucleation analysis

    An in-situ synchrotron diffraction study of stress relaxation in titanium:Effect of temperature and oxygen on cold dwell fatigue

    Get PDF
    There is a long-standing technological problem in which a stress dwell during cyclic loading at room temperature in Ti causes a drastic fatigue life reduction. To better understand the material characteristics that control or exacerbate this behaviour, evaluation of the time dependent plasticity of the main prismatic and basal slip systems is critical. Incorporating the influence of operating temperatures and common alloying elements on cold dwell fatigue will be beneficial for future alloy design to address this problem. In this work, characterisation of the time dependent plastic behaviour of two commercially pure titanium samples (grade 1 and grade 4) with different oxygen content at 4 different temperatures (room temperature, 75 , 145 and 250 ) was performed during stress relaxation using synchrotron X-ray diffraction. Key parameters that govern the dislocation motion were determined for the major prismatic and basal slip systems as a function of temperature and oxygen content by calibrating a crystal plasticity finite element model with the measured lattice strain relaxation responses. From the temperatures assessed, 75 was found to be the worst-case scenario, where the macroscopic plastic strain accumulation was significant during a relaxation cycle due to the greatest activity of both prism and basal slip systems. As the temperature increases, the contribution of thermal energy becomes greater than mechanical energy for dislocation glide. Oxygen was found to have a stronger strengthening effect on prism slip over basal slip, through a significant change in their respective critical resolved shear stresses. This effect becomes more significant in high oxygen content commercially pure Ti

    Partnership for International Research and Education in Microfluidic Technology with Applications in Point of Care Diagnostic

    Get PDF
    This poster summarizes the research highlights of a project conducted as part of an National Science Foundation (NSF) partnership for research and education. The objective of this multidisciplinary, international project was to conduct research on microfluidic technology and applications. The project team is comprised of participants from the University of Rhode Island and the Technical University of Braunschweig in Germany. The research focuses on the following four tasks: Task 1 – Discovery of disease biomarkers; Task 2 –Streaming based microfluidic platform for pumping, mixing, separation and detection; Task 3 – Development of rapid, quantitative and sensitive microfluidic fluorescence immunosensors for point-of-care diagnostics; and Task 4 – Microfluidic ocean based applications. The following elements are examined in Task 3: Enzyme-linked Immunosorbent Assay (ELISA) by manipulation of magnetic beads in microfluidic channel network; development of charged coupled device (CCD) contact imaging system for lab-on-a-chip biosensors for detection of disease biomarkers; a portable and hand-held lab-on-a-chip system for detection of disease biomarkers; on-chip valveless sequential sample loading, mixing, and micro-pneumatic valves; and numerical simulation of microfluidics using dissipative particle dynamics

    Separation of Spin and Charge Quantum Numbers in Strongly Correlated Systems

    Full text link
    In this paper we reexamine the problem of the separation of spin and charge degrees of freedom in two dimensional strongly correlated systems. We establish a set of sufficient conditions for the occurence of spin and charge separation. Specifically, we discuss this issue in the context of the Heisenberg model for spin-1/2 on a square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor antiferromagnetic couplings. Our formulation makes explicit the existence of a local SU(2) gauge symmetry once the spin-1/2 operators are replaced by bound states of spinons. The mean-field theory for the spinons is solved numerically as a function of the ratio J2/J1J_2/J_1 for the so-called s-RVB Ansatz. A second order phase transition exists into a novel flux state for J2/J1>(J2/J1)crJ_2/J_1>(J_2/J_1)_{{\rm cr}}. We identify the range 0<J2/J1<(J2/J1)cr0<J_2/J_1<(J_2/J_1)_{\rm cr} as the s-RVB phase. It is characterized by the existence of a finite gap to the elementary excitations (spinons) and the breakdown of all the continuous gauge symmetries. An effective continuum theory for the spinons and the gauge degrees of freedom is constructed just below the onset of the flux phase. We argue that this effective theory is consistent with the deconfinement of the spinons carrying the fundamental charge of the gauge group. We contrast this result with the study of the one dimensional quantum antiferromagnet within the same approach. We show that in the one dimensional model, the spinons of the gauge picture are always confined and thus cannot be identified with the gapless spin-1/2 excitations of the quantum antiferromagnet Heisenberg model.Comment: 56 pages, RevteX 3.

    Rules of Engagement: Journalists’ attitudes to industry influence in health news reporting.

    Get PDF
    Health-related industries use a variety of methods to influence health news, including the formation and maintenance of direct relationships with journalists. These interactions have the potential to subvert news reporting such that it comes to serve the interests of industry in promoting their products, rather than the public interest in critical and accurate news and information. Here we report the findings of qualitative interviews conducted in Sydney, Australia, in which we examined journalists’ experiences of, and attitudes towards, their relationships with health-related industries. Participants’ belief in their ability to manage industry influence and their perceptions of what it means to be unduly influenced by industry raise important concerns relating to the psychology of influence and the realities of power relationships between industry and journalists. The analysis also indicates ways in which concerned academics and working journalists might establish more fruitful dialogue regarding the role of industry in health-related news and the extent to which increased regulation of journalist-industry relationships might be needed.NHMR

    Scratching the surface: Elastic rotations beneath nanoscratch and nanoindentation tests

    Get PDF
    In this paper, we investigate the residual deformation field in the vicinity of nanoscratch tests using two orientations of a Berkovich tip on an (001) Cu single crystal. We compare the deformation with that from indentation, in an attempt to understand the mechanisms of deformation in tangential sliding. The lattice rotation fields are mapped experimentally using high-resolution electron backscatter diffraction (HR-EBSD) on cross-sections prepared using focused ion beam (FIB). A physically-based crystal plasticity finite element model (CPFEM) is used to simulate the lattice rotation fields, and provide insight into the 3D rotation field surrounding a nano-scratch experiment, as it transitions from an initial static indentation to a steady-state scratch. The CPFEM simulations capture the experimental rotation fields with good fidelity, and show how the rotations about the scratch direction are reversed as the indenter moves away from the initial indentation
    • …
    corecore