50 research outputs found

    Malaria Transmission in South America—Present Status and Prospects for Elimination

    Get PDF
    Four countries (Brazil, Colombia, Peru, and Venezuela) together contributed ~80% of the 875,000 malaria cases reported in the Latin American region (2016). During the 10-year period (2005–2015) when global malaria incidence was dramatically reduced, Brazil and Colombia were an integral part of this trend, on track to meet the mid-term 2020 goal established by the World Health Organization. In Colombia, since 2015 at the cessation of a five-year globally funded malaria program, both incidence and proportion of Plasmodium falciparum infections have increased, mainly due to the budget constraints. Similarly, despite a strong record and major recognition for reducing malaria, in 2017, Brazil has seen a resurgence of malaria cases, but no increase in the proportion of Plasmodium falciparum to P. vivax. A globally funded malaria control program in Peru from 2005 to 2010 resulted in appreciable reduction in the annual parasitic incidence down to 1/1000 by 2011–2012, but soon after, the annual malaria incidence began to rise and by the end of 2017, there were 53,261 reported cases. To add to Venezuela’s political and financial woes, malaria continues to increase, such that, 300,189 cases were reported by the end of week 42, 2017. The only rational pathway to malaria elimination is sustained nation-level financial support that does not fall prey to political vicissitudes

    Spectral properties of fractional differentiation operators

    Full text link
    We consider fractional differentiation operators in various senses and show that the strictly accretive property is the common property of fractional differentiation operators. Also we prove that the sectorial property holds for differential operators second order with a fractional derivative in the final term, we explore a location of the spectrum and resolvent sets and show that the spectrum is discrete. We prove that there exists a two-sided estimate for eigenvalues of the real component of operators second order with the fractional derivative in the final term.Comment: The research results were discussed and presented at the 8th International Conference on Differential and Functional Differential Equations. Moscow, Russia, August 13-20, 201

    The effect of environmental degradation and land use change on malaria re-emergence in south Venezuela: a spatiotemporal modelling study

    Get PDF
    Background: Malaria transmission is highly dependent on environmental conditions. The association between climatic variables and malaria transmission is well established, but the interaction between variations in climate and land use change, such as deforestation, is less well understood. Earth observation data provide a valuable and accessible resource to investigate these environment–malaria associations, in particular where little ground truth data are available. Progress towards malaria elimination in Latin America is being hindered by a surge of cases in Venezuela, a country that accounted for 53% of cases in the region in 2019. The country's economic and political crisis has fuelled economic migration to gold mining areas in the south, where extraction activities are expanding malaria vector habitats and sustaining disease transmission. Methods: In this spatiotemporal modelling study, we used multisource Earth observation data, including meteorological, land use change, and socioeconomic factors, and data on mining activity, to investigate how changes in the ecological landscape might have facilitated increases in the incidence of malaria in the past 20 years. We modelled spatiotemporal malaria case data for 1996–2016 using a Bayesian hierarchical mixed-model framework for Bolívar state in Venezuela, a malaria foci where approximately 60% of national cases occur annually. We examined how mining activities were associated with malaria hotspots and also considered the potential effects of climate variation, seasonality, and spatial dependency structures. Findings: We found that malaria risk was increased in mining hotspots, which were important in sustaining transmission in Bolívar state. We also found that the effect of temperature and rainfall variation differed depending on the level of deforestation in Bolívar, where the increased risk of malaria with temperature was greatest in areas that were more deforested. Interpretation: Our findings provide important evidence of environmentally driven re-emergence of malaria and highlight the advantages of using Earth observation data for understanding malaria dynamics in areas with sparse or incomplete data records

    River-specific macrogenomic diversity in Simulium guianense s. l. (Diptera: Simuliidae), a complex of tropical American vectors associated with human onchocerciasis

    Get PDF
    Simulium guianense Wise is a Latin American vector complex of black flies associated with transmission of the causal agent of human onchocerciasis (river blindness). An analysis of the chromosomal banding patterns of 607 larvae of S. guianense s. l. revealed a high level of variation involving 83 macrogenomic rearrangements across 25 populations in Brazil, French Guiana, and Venezuela. The 25 populations were assigned to 13 cytoforms (A1, A2, B1–B4, C, D, E1–E4, and F), some of which are probably valid species. Based on geographical proximity, a member of the B group of cytoforms probably represents the name-bearing type specimen of S. guianense and the primary vector in the last-remaining onchocerciasis foci in the Western Hemisphere. Cytoform B3 in Amapá State is implicated as an anthropophilic simuliid in an area currently and historically free of onchocerciasis. Distributions of cytoforms are associated with geography, elevation, and drainage basin, and are largely congruent with ecoregions. Despite extraordinarily large larval populations of S. guianense s. l. in big rivers and consequent production of female flies for dispersal, the cytoforms maintain their chromosomal distinction within individual rivers, suggesting a high degree of fidelity to the specialized breeding habitats—rocky shoals—of the natal rivers. © 2017 Adler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Synergies between environmental degradation and climate variation on malaria re-emergence in southern Venezuela: a spatiotemporal modelling study.

    Get PDF
    BACKGROUND: Environmental degradation facilitates the emergence of vector-borne diseases, such as malaria, through changes in the ecological landscape that increase human-vector contacts and that expand vector habitats. However, the modifying effects of environmental degradation on climate-disease relationships have not been well explored. Here, we investigate the rapid re-emergence of malaria in a transmission hotspot in southern Venezuela and explore the synergistic effects of environmental degradation, specifically gold-mining activity, and climate variation. METHODS: In this spatiotemporal modelling study of the 46 parishes of the state of Bolívar, southeast Venezuela, we used data from the Venezuelan Ministry of Health including population data and monthly cases of Plasmodium falciparum malaria and Plasmodium vivax malaria between 1996 and 2016. We estimated mean precipitation and temperature using the ERA5-Land dataset and used monthly anomalies in sea-surface temperature as an indicator of El Niño events between 1996 and 2016. The location of suspected mining sites in Bolívar in 2009, 2017, and 2018 were sourced from the Amazon Geo-Referenced Socio-Environmental Information Network. We estimated measures of cumulative forest loss and urban development by km2 using annual land cover maps from the European Space Agency Climate Change Initiative between 1996 and 2016. We modelled monthly cases of P falciparum and P vivax malaria using a Bayesian hierarchical mixed model framework. We quantified the variation explained by mining activity before exploring the modifying effects of environmental degradation on climate-malaria relationships. FINDINGS: We observed a 27% reduction in the additional unexplained spatial variation in incidence of P falciparum malaria and a 23% reduction in P vivax malaria when mining was included in our models. The effect of temperature on malaria was greater in high mining areas than low mining areas, and the P falciparum malaria effect size at temperatures of 26·5°C (2·4 cases per 1000 people [95% CI 1·78-3·06]) was twice as high as the effect in low mining areas (1 case per 1000 people [0·68-1·49]). INTERPRETATION: We show that mining activity in southern Venezuela is associated with hotspots of malaria transmission. Increased temperatures exacerbated malaria transmission in mining areas, highlighting the need to consider how environmental degradation modulates climate effect on disease risk, which is especially important in areas subjected to rapidly rising temperatures and land-use change globally. Our findings have implications for the progress towards malaria elimination in the Latin American region. Our findings are also important for effectively targeting timely treatment programmes and vector-control activities in mining areas with high rates of malaria transmission. FUNDING: Biotechnology and Biological Sciences Research Council, Royal Society, US National Institutes of Health, and Global Challenges Research Fund. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section

    Malaria in Southern Venezuela: The hottest hotspot in Latin America.

    Get PDF
    Malaria elimination in Latin America is becoming an elusive goal. Malaria cases reached a historical ~1 million in 2017 and 2018, with Venezuela contributing 53% and 51% of those cases, respectively. Historically, malaria incidence in southern Venezuela has accounted for most of the country's total number of cases. The efficient deployment of disease prevention measures and prediction of disease spread to new regions requires an in-depth understanding of spatial heterogeneity on malaria transmission dynamics. Herein, we characterized the spatial epidemiology of malaria in southern Venezuela from 2007 through 2017 and described the extent to which malaria distribution has changed country-wide over the recent years. We found that disease transmission was focal and more prevalent in the southeast region of southern Venezuela where two persistent hotspots of Plasmodium vivax (76%) and P. falciparum (18%) accounted for ~60% of the total number of cases. Such hotspots are linked to deforestation as a consequence of illegal gold mining activities. Incidence has increased nearly tenfold over the last decade, showing an explosive epidemic growth due to a significant lack of disease control programs. Our findings highlight the importance of spatially oriented interventions to contain the ongoing malaria epidemic in Venezuela. This work also provides baseline epidemiological data to assess cross-border malaria dynamics and advocates for innovative control efforts in the Latin American region

    Understanding the potential impact of different drug properties on SARS-CoV-2 transmission and disease burden : a modelling analysis

    Get PDF
    Q1Q1Background The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. Methods and Findings develop a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care to explore the potential public-health impact of a range of different potential therapeutics, under a range of different scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) drug efficacy in the absence of supportive care. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. We find the impact of drugs like dexamethasone (which are delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in highincome countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics. Conclusions There is a global asymmetry in who is likely to benefit from advances in the treatment of COVID-19 to date, which have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priorityRevista Internacional - Indexad

    Black flies (Diptera: Simuliidae) from the Grand Savanna region of Venezuela.

    No full text
    corecore