13 research outputs found

    A theoretical approach for the interpretation of pulsating PMS intermediate-mass stars

    Full text link
    The investigation of the pulsation properties of pre-main-sequence intermediate-mass stars is a promising tool to evaluate the intrinsic properties of these stars and to constrain current evolutionary models. Many new candidates of this class have been discovered during the last decade and very accurate data are expected from space observations obtained for example with the CoRoT satellite. In this context we aim at developing a theoretical approach for the interpretation of observed frequencies, both from the already available ground-based observations and from the future more accurate and extensive CoRoT results. To this purpose we have started a project devoted to the computations of fine and extensive grids of asteroseismic models of intermediate mass pre-main-sequence stars. The obtained frequencies are used to derive an analytical relation between the large frequency separation and the stellar luminosity and effective temperature and to develop a tool to compare theory and observations in the echelle diagram. The predictive capabilities of the proposed method are verified through the application to two test stars. As a second step, we apply the procedure to two true observations from multisite campaigns and we are able to constrain their stellar parameters, in particular the mass, in spite of the small number of frequencies. We expect that with a significantly higher number of frequencies both the stellar mass and age could be constrained and, at the same time, the physics of the models could be tested.Comment: Accepted for publication on A&

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure

    Oscillating blue stragglers, gamma Doradus stars and eclipsing binaries in the open cluster NGC 2506

    Full text link
    Context: This is the first step in a project to combine studies of eclipsing binaries and oscillating stars to probe the interior of Blue Stragglers (BS). This may imply a way to discriminate observationally between different birth mechanisms of BS stars. Aims: We study the open cluster NGC 2506 which contains oscillating BS stars and detached eclipsing binaries for which accurate parameters can be derived. This will tightly constrain the cluster isochrone and provide an absolute mass, radius and luminosity-scale for the cluster stars along with the cluster age, metallicity and distance. The present work focuses on obtaining the light curves of the binaries and determine their orbital periods, on obtaining power spectra of the oscillating BS stars to select targets for follow-up studies, and on searching for gamma Doradus type variables which are also expected to be present in the cluster. Methods: With a two-colour, dual-site photometric campaign we obtained 3120 CCD-images of NGC 2506 spread over four months. We analysed the BI time-series of the oscillating stars and used simulations to derive statistical uncertainties of the resulting frequencies, amplitudes and phases. A preliminary mode-identification was performed using frequency ratios for the oscillating BS stars, and amplitude ratios and phase differences for a population of newly detected gamma Doradus stars. Results: We quadrupled the number of known variables in NGC 2506 by discovering 3 new oscillating BS stars, 15 gamma Doradus stars and four new eclipsing binaries. The orbital periods of 2 known, detached eclipsing binaries were derived. We discovered a BS star with both p-mode and g-mode variability and we confronted our gamma Doradus observations with state-of-the-art seismic models, but found significant discrepancy between theory and observations. Conclusions: . NGC 2506 is an excellent target for asteroseismic tests of stellar models, as strong external constraints can be imposed on the models of a population of more than 20 oscillating stars of different types. Based on observations obtained at the Flemish Mercator telescope on La Palma, Spain, the Danish 1.5-m telescope at ESO, La Silla, Chile, and on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programme 075.D-0206(B)). Catalog of individual photometry measurements for all variables is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/465/96
    corecore