1,254 research outputs found

    Linear theory of the effect of a sloping boundary on circulation in a homogeneous laboratory model

    Get PDF
    Griffiths and Veronis (1997) reported observations of the effect of a sloping boundary on the circulation in a sliced-cylinder model of wind-driven circulation in which the flow is driven by the relative rotation of the top lid. A summary of observations for the nearly linear case is given here along with the linear analysis based on the theory of a rotating homogeneous fluid. Good agreement between the two is obtained, and the (straightforward) physics of the system is described

    A laboratory study of the effects of a sloping side boundary on wind-driven circulation in a homogeneous ocean model

    Get PDF
    A laboratory model is used to investigate the effects of sloping boundaries on homogeneous wind-driven β-plane circulation. The very gentle slopes of real oceanic boundaries raise the possibility that dissipation by lateral diffusion of vorticity to the boundary is largely removed, leaving dissipation only in bottom Ekman layers. The laboratory model is a modification of the rotating ‘sliced-cylinder’ introduced by Pedlosky and Greenspan (1967) and Beardsley (1969) and in which flow is driven by a differentially rotating lid. The vertical wall is replaced with a side wall having a uniform 45° slope around the entire perimeter. This sloping boundary, like a continental slope, tends to steer the flow along the slope. In the geometry chosen for this study it also provides closed potential vorticity contours through every point in the basin, thus removing the blocked contours of the experiments with a vertical wall and the open contours of ocean basins that approach the equator. For cyclonic forcing there is a northward (Sverdrup) flow in the interior superimposed on a zonal flow so that a particle starts out at the southwest, enters the slope region in the northwest, circles cyclonically along a circle of constant radius (and depth) to a point on the southeast where it crosses constant depth contours and rejoins the original point. The direction of flow is reversed for anticyclonic forcing. The main dissipation of vorticity takes place in the southeast where the flow crosses constant depth contours. For cyclonic forcing the flow is stable and steady under all conditions achieved. For anticyclonic forcing the laboratory flow is unsteady under all conditions attainable and unstable to eddy shedding at sufficiently large Rossby or Reynolds numbers. At large Ekman numbers the onset of instability corresponds to shedding of cyclonic eddies in the region where the boundary current enters the interior, whereas at small Ekman numbers it corresponds to periodic breakup of an anticyclonic gyre in the ‘northwest’ and the formation of anticyclonic eddies. Eddies of both sign are shed when the forcing is sufficiently supercritical and the Ekman number small. A simple, qualitative argument explains why the cyclonic flow is stable and the anticyclonic flow is unstable when the system is nonlinear

    The Morphology of Lava Flows in Planetary Environments: Predictions From Analog Experiments

    Get PDF
    The rates of surface cooling and lateral spreading are evaluated for lava flows on the surface of Earth, Venus, Mars, the Moon, and 10. Differences between the flow morphologies expected in these environments are then predicted under the assumption that the results of recent laboratory simulations oflavas using wax extruded beneath cold water (Fink and Griffiths, 1990) can be carried over. These experiments involved the spreading of viscous liquid under gravity in the presence of a solidifying surface crust and revealed a set of four distinct surface morphologies. Transitions from one morphology to the next occurred in a well-defined sequence when the relative rates of surface solidification and lateral spreading were varied. In comparison with subaerial flows on Earth, the surface of lavas solidifies faster on Venus, where the dense atmosphere provides additional convective heat transfer. Lateral flow oflava is much slower under the smaller gravity of the Moon. Hence, for a given extrusion rate and viscosity, solid crust is predicted to form closer to the vent on both the Moon and Venus than on Earth. Equivalently, faster extrusion rates than those on Earth are required on the Moon, 10, and Venus in order to produce a given surface morphology. A comparison of observed structure, flow rates, and estimated viscosities for some well-documented terrestrial lava flows shows reasonable agreement with the predictions of the model. Extrapolation to extraterrestrial lavas is then illustrated by constraining the effusion rate for a Martian lava flow whose composition is assumed. Spectral information on the chemical composition of Martian flows to be sought by the thermal emission spectrometer on the Mars Observer mission, in conjunction with detailed morphologic observations from the Mars Observer camera, could allow much more accurate estimates of effusion rates for Martian lavas

    Ocean stratification under oscillatory surface buoyancy forcing

    Get PDF
    Laboratory experiments with overturning circulation driven by oscillatory heat fluxes at one boundary are used to explore implications, for the ocean stratification, of a cyclic fluctuation in sea-surface buoyancy forcing. Fluctuations having a range of periods spanning the timescale for global recycling of the ocean volume through the thermocline are considered, with emphasis on inter-hemispheric \u27see-saw\u27 oscillations. Episodic sinking of dense water in the oceans is represented by convection in a channel with a base that is cooled over a central region and subjected to oscillatory heating near both ends, while providing a constant total heat input. For this simplified system the time-average interior temperature is found to be insensitive to the forcing period, but does vary with oscillation amplitude, whereas the interior fluctuations increase with forcing period. The circulation and density field are significantly different from those given by a steady forcing equal to the time-average of the actual oscillatory forcing, even for high-frequency oscillations. The results indicate that the overall stratification lies between that expected from the strongest phase of deep sinking and that given by symmetric sinking in both hemispheres. Glacial cycles are predicted to involve significant temperature fluctuations in the abyssal ocean. However, they are too short for the ocean to remain in quasi-equilibrium with the changing boundary conditions

    Channel kets, entangled states, and the location of quantum information

    Full text link
    The well-known duality relating entangled states and noisy quantum channels is expressed in terms of a channel ket, a pure state on a suitable tripartite system, which functions as a pre-probability allowing the calculation of statistical correlations between, for example, the entrance and exit of a channel, once a framework has been chosen so as to allow a consistent set of probabilities. In each framework the standard notions of ordinary (classical) information theory apply, and it makes sense to ask whether information of a particular sort about one system is or is not present in another system. Quantum effects arise when a single pre-probability is used to compute statistical correlations in different incompatible frameworks, and various constraints on the presence and absence of different kinds of information are expressed in a set of all-or-nothing theorems which generalize or give a precise meaning to the concept of ``no-cloning.'' These theorems are used to discuss: the location of information in quantum channels modeled using a mixed-state environment; the CQCQ (classical-quantum) channels introduced by Holevo; and the location of information in the physical carriers of a quantum code. It is proposed that both channel and entanglement problems be classified in terms of pure states (functioning as pre-probabilities) on systems of p2p\geq 2 parts, with mixed bipartite entanglement and simple noisy channels belonging to the category p=3p=3, a five-qubit code to the category p=6p=6, etc.; then by the dimensions of the Hilbert spaces of the component parts, along with other criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor typographical errors correcte

    The role of Turbulent Convection and wind in Geostrophic Circulation: Direct Numerical Simulation Study

    Get PDF
    Direct numerical simulations (DNS) are used over a three-dimensional rotating basin under geostrophic rotation, in order to understand the relative roles of buoyancy and wind stress on the heat and mass transport. Our main focus is on the large Rayleigh number regime (Ra, being the measure of buoyancy forcing) which is the order of 1012 to sustain turbulent convection. We also maintained small values of convective Rossby number Ro ~ 0.1 at a fixed Prandtl number, Pr ~ 5 while imposing a meridional wind stress pattern

    New chiral organosulfur donors related to bis(ethylenedithio)tetrathiafulvalene

    Get PDF
    Six new enantiopure chiral organosulfur donors, with structures related to BEDT-TTF, have been synthesised for use in the preparation of organic metals, starting either by double nucleophilic substitutions on the bis-mesylate of 2R,4Rpentane-2,4-diol or by a cycloaddition with subsequent elimination of acetic acid on the enol acetate of (+)-nopinone. Crystal structures of some of their radical cation triiodides salts and TCNQ complexes are reported

    Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris

    Get PDF
    Objective: There is great interest in the identification of genetic factors that differentiate psoriatic arthritis (PsA) from psoriasis vulgaris (PsV), as such discoveries could lead to the identification of distinct underlying aetiological pathways. Recent studies identified single nucleotide polymorphisms (SNPs) in the interleukin 13 (IL-13) gene region as risk factors for PsV. Further investigations in one of these studies found the effect to be primarily restricted to PsA, thus suggesting the discovery of a specific genetic risk factor for PsA. Given this intriguing evidence, association to this gene was investigated in large collections of PsA and PsV patients and healthy controls. Methods: Two SNPs (rs20541 and rs1800925) mapping to the IL-13 gene were genotyped in 1057 PsA and 778 type I PsV patients using the Sequenom genotyping platform. Genotype frequencies were compared to those of 5575 healthy controls. Additional analyses were performed in phenotypic subgroups of PsA (type I or II PsV and in those seronegative for rheumatoid factor). Results: Both SNPs were found to be highly associated with susceptibility to PsA (rs1800925 ptrend = 6.1×10−5 OR 1.33, rs20541 ptrend = 8.0×10−4 OR 1.27), but neither SNP was significantly associated with susceptibility to PsV. Conclusions: This study confirms that the effect of IL-13 risk locus is specific for PsA, thus highlighting a key biological pathway that differentiates PsA from PsV. The identification of markers that differentiate the two diseases raises the possibility in future of allowing screening of PsV patients to identify those at risk of developing PsA

    Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb

    Get PDF
    Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, Neb(Y2303H, Y935X), has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, Neb(Y2303H,Y935X) mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.Peer reviewe
    corecore