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Linear theory of the effect of a sloping boundary on
circulation in a homogeneous laboratory model

by Ross W. Griffiths1 and George Veronis2

ABSTRACT
Griffiths and Veronis (1997) reported observations of the effect of a sloping boundary on the

circulation in a sliced-cylindermodel of wind-driven circulation in which the � ow is driven by the
relative rotation of the top lid. A summary of observations for the nearly linear case is given here
along with the linear analysis based on the theory of a rotating homogeneous � uid. Good agreement
between the two is obtained, and the (straightforward)physics of the system is described.

1. Introduction

Griffiths and Veronis (1997; hereafter, GV) reported experimental observations of the
effects of a sloping side boundary on the circulation of a homogeneous � uid in the
sliced-cylinder tank of Griffiths and Kiss (1998), when the top lid rotates with angular
velocity, V 1 D V , slightly different from that of the cylinder. A perspective diagram of the
experimental basin is shown in Figure 1. The bottom has a constant slope of 0.1 relative to
the horizontal; the topographic beta effect makes the shallow end simulate north and the
deep end south as shown in the � gure. The depth is constant along west-east lines. The side
walls are the parts of a 45° cone between the (upside down) base of the cone at the top and
the intersection of the side of the cone with the sloping bottom. Contours of constant depth
are indicated by circles near the rim and D-shaped contours made up of partial circles on
the slope and straight (east-west) lines across the interior. The working � uid beneath the
circular lid of radius a 5 48.65 cm has a mean depth of Ho 5 12.5 cm. The ellipse along
which the sloping side wall intersects the bottom is given by

re 5
a 2 Ho

1 2 tan a sin u
(1.1)

where a is the radius of the rim, Ho the mean depth, a the angle of the sloping bottom and u
the azimuthal angle. The side wall slope is unity, and, because it is a multiplicative
constant, does not appear explicitly in re.
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Details of the observed � ow are given in GV. Here, we note the contrast between the
� ow in the cylinder with straight side walls (Fig. 2) and that in the cylinder with sloping
walls (Fig. 3). Instead of all interior � ow emanating from and returning to a frictionally
controlled western boundary layer (Fig. 2), the sloping side generates an interior � ow with
streamlines that are westward but with a northward drift (Fig. 3). The effect of frictional

Figure 1. A perspectivediagram of the experimentalbasin with topographicallysimulated directions
correspondingto north, south, east and west as marked.The depth is constant along circles near the
rim and on D-shaped contours closer to the interior. The two slopes meet along the ellipse joining
the corners of the D-shaped contours and given by Eq. (1.1).

Figure 2. A streamfunctionplot showing the steady cyclonic � ow computed from a numericalmodel
of the laboratory experiment with vertical side walls (Griffiths and Kiss, 1998). Nonlinear effects
cause the small overshoots as the � ow emerges from the western boundary layer in the southwest.
Cyclonic lid forcing, Ro 5 0.004, E 5 3.15 3 102 5, aspect ratio Ho /2a 5 0.125.
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dissipation on the slope allows � uid columns to cross depth contours; that occurs on the
eastern side of the basin.

We had intended to include in GV a theoretical analysis of the � ow for the linear case but
had made an error which has since been corrected; the corrected theory follows. This paper
should be read as part of GV.

2. The mathematical model and its solution

The linear analysis for this � ow is relatively simple and the physics that determines the
� ow is easy to understand.The equations for the conservation of momentum and mass for a
homogeneous � uid in a rotating system are

Dv

Dt
1 2 V 3 v 5 2

1

r
= p 1 v= 2v, (2.1)

= · v 5 0, (2.2)

Figure 3. Photograph of the streamlines in the sloping wall case revealed by advection of dye in the
steady � ow produced by cyclonic forcing with V 5 2 rad s 2 1, E 5 3.15 3 102 5, Ro 5 0.004.
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where V is the angular velocity of rotation of the system, v is the velocity vector, and v is
kinematic viscosity. Gravity is not relevant in this system because there is no free surface
since the homogeneous � uid in our experiment is completely contained between the
sloping sides and bottom and the differentially rotating lid. The assumption of linear,
steady � ow eliminates the term, Dv/Dt. Therefore, the � ow is determined by geostrophic
balance modi� ed by friction.

The theoretical methodologyfor dealing with such a system, where friction is coupled to
geostrophic � ow by means of Ekman layers at the top and bottom boundaries, dates back to
Greenspan and Howard (1963). More complete accounts, including the treatment of
spatially variable top and bottom boundaries, were developed by Greenspan (1968) and by
Howard in a series of unpublished lectures that he gave in Stockholm in 1969. Pedlosky
(1987) derives the equations for � ows under oceanic conditions.

The system is made nondimensional by scaling the horizontal coordinates by a, the
vertical by Ho, the horizontal velocities by a D V , the vertical velocity by HoD V and the
pressure by r a2V D V . Then with Dv/Dt 5 0, the horizontal part of (2.1) in rectangular
cartesian coordinates takes the nondimensional form

2k 3 v 5 2 = p 1 Ea= 2v 1 E
­ 2v

­ z 2
, (2.3)

where Ea 5 v/ V a2 and E 5 v/ V H o
2.

The procedure for the linear problem is to divide the variables into two parts: (a) a part
valid in the Ekman boundary layers near the top and bottom boundaries and decaying
rapidly to zero with distance from each boundary, and (b) a (vertically) interior part with
zero vertical derivative and valid throughout the depth of the � uid. Boundary conditionsat
the top and bottom are satis� ed by the sum of the two parts. Each part is expanded in
powers of E 1/2 and a set of equations (coefficients of En/2, n 5 0, 1, 2, . . .) is derived. The
result is that the vertically interior equations at O(E 0) and O(E1/2) are geostrophic and
satisfy the Taylor-Proudman theorem (zero z derivatives). Since ­ w/ ­ z vanishes in the
interior at O(E 0) and O(E 1/2), interior w at the top equals interior w at the bottom.The latter
contains a contribution from the sloping bottom. The total normal velocity vanishes at the
two boundaries. We make use of that and the Ekman layer solutions to match the vertical
velocities of the boundary layers evaluated at the boundaries. The result is expressed in
terms of the interior vertical vorticity as

(c 1 1)

2
E1/2 z 1 un

­ b

­ n
5 E 1/2, (2.4)

where z is the vertical vorticity, b(x, y) is the height of the bottom above a reference level,
and n denotes the direction toward contours of decreasing depth (increasing b). c 5 21/4

over the side walls where the slope is unity and c < 1 over the gentler slope (0.1) of the
interior.
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Inside the ellipse where the bottom slope is small the topographic term is 0.1v and (2.4)
takes the form (u is eastward and v is northward)

E a
1/2 1

­ v

­ x
2

­ u

­ y 2 1 0.1v 5 Ea
1/2, (2.5)

or in terms of the pressure

Ea
1/2 = 2p 1 0.1

­ p

­ x
5 2E a

1/2. (2.6)

Between the ellipse and the rim the Ekman pumping velocity must be corrected because
the slope ( 5 1) is not small. Pedlosky (1987, Eq. 4.9.32) gives the form of w with that
correction and the vorticity equation in this case becomes (the velocity, vr, is radial and v u

is azimuthal)

E 1/2

2 3 (cos 2 1/2 a 1 1)
1 ­ (rv u )

r ­ r
2 (cos2 5/2 a 1 1)

1­ v r

r ­ u 4 1 v r tan u 5 E 1/2, (2.7)

or in terms of the pressure in polar coordinates and with a 5 p /4,

E1/2

2 3 (21/4 1 1)
1

r

­ 1 r
­ p

­ r 2
­ r

1 (25/4 1 1)
1

r 2

­ 2p

­ u 2 4 2
1­ p

r ­ u
5 E 1/2. (2.8)

The change from Ea in (2.5) to E in (2.7) is due to the difference in the aspect ratios in the
two regions (inside and outside the ellipse).

a. E 0 (subscript 0) solution

It follows from (2.4) and (2.7) that the lowest order (E0) � ow is parallel to contours of
constant depth. Then from (2.7) with vo

r 5 0 we obtain

v o
u 5

r

(21/4 1 1)
, (2.9)

or

po 5
(r 2 2 1)

(21/4 1 1)
, (2.10)

where po 5 0 on r 5 1. A (lateral) boundary layer can be added to make total v u 5 0 on r 5
1. The value of po on a speci� c depth contour inside the ellipse equals the value on the same
depth contour over the slope, i.e., po is constant on a D-shaped contour. So the values given
by (2.10) on the ellipse are extended into the region inside the ellipse. However, because
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the interior slope is only a tenth of that in the boundary region, the zonal velocity in the
interior is only about a tenth of the azimuthal velocity over the slope.

b. E1/2 (subscript 1) solution

From (2.5) the northward velocity within the ellipse occurs at this order and is given by

v1 5 10E a
1/2. (2.11)

The contributionfrom the frictional term in (2.5) is less than one percent of (2.11). In terms
of pressure (2.11) yields

p1x 5 20Ea
1/2,

or

p1 5 20Ea
1/2 (x 2 xb ), (2.12)

where we use the boundary condition p1 5 0 on the eastern rim where x 5 xb.
On the sloping boundary we now have to solve (2.8) for p1. The boundary conditions for

that elliptic equation are the value of p1 given by (2.12) evaluated on the ellipse, r 5 re, and
p1 5 0 on r 5 1. The boundary conditions in the u direction are that p1 and its derivativesbe
periodic. The solution for the slope region is obtained by numerical relaxation.

The streamlines ( p contours) over the entire domain with p correct to O(E 1/2) are shown
in Figure 4. Observed trajectories for the experiments of GV are depicted in Figure 3.
Except for the discontinuous velocities (derivatives of p) where the solutions inside and
outside the ellipse come together, the patterns resemble each other.

c. E 1/4 correction

We have added Stewartson E 1/4 layers (indicated by primed variables) on each side of
r 5 re to eliminate the discontinuity in the azimuthal velocity, v (we drop the superscript u
here), across the ellipse. On the slope side the radial coordinate is stretched by the
substitution

r 2 re 5 h E1/4, h . 0 (2.13)

where ­ /­ h 5 O(1). The dominant term for Ekman pumping at the top (z 5 1) is the
vertical velocity given by

w 8 5 2
E 1/4

2

­ v 8

­ h
. (2.14)

At the sloping bottom (z 5 1 2 re) the Ekman pumping is

w 8 5 2
E 1/4

23/4

­ v 8

­ h
. (2.15)
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Since w8 is quasi-geostrophic and satis� es the equation

­ 2w 8

­ z 2
5 0, (2.16)

we choose

w 8 5 2
E 1/4

2

z 2 (1 2 re)

1 2 (1 2 re)

­ v 8

­ h
1

E 1/4

23/4

1 2 z

1 2 (1 2 re)

­ v 8

­ h
, (2.17)

which satis� es conditions (2.14) to (2.16).
The continuity equation in the E1/4 layer takes the form (note that the depth can be

considered constant inside the E1/4 layer)

E 2 1/4
­ u 8

­ h
1

­ w 8

­ z
5 0, (2.18)

where u8 is the radial velocity and where we neglect u derivatives. Eq. (2.18) admits a
streamfunction de� ned by

E 2 1/4u 8 5
­ c

­ z
, w8 5 2

­ c

­ h
. (2.19a,b)

Figure 4. Streamlines ( p contours) for the linear (Ro 5 0) system with contributions of O(E 0) plus
O(E 1/2) over the entire basin with interior and slope region calculated separately but joined by
matching values of p along the ellipse. V 5 2 rad s 2 1, E 5 3.15 3 102 5.
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Eqs. (2.17) and (2.19b) are satis� ed by

c 5 3
E1/4

2

z 2 (1 2 re)

1 2 (1 2 re )
2

E1/4

23/4

1 2 z

1 2 (1 2 re) 4 v 8, (2.20)

and use of (2.19a) yields

2u 8 5
E 1/2

re
(1 1 21/4 )v 8. (2.21)

Since the E 1/4 azimuthal velocity satis� es the equation

E1/2
­ 2v8

­ h 2
2 2u 8 5 0, (2.22)

we end up with the differential equation for v8,

­ 2v 8

­ h 2
2

1 1 21/4

re
v8 5 0, (2.23)

which has the solution

v8 5 c exp 3 2 1
1 1 21/4

re 2
1/2

h 4 , (2.24)

where c is to be determined by matching total v across re. An analogousprocedure as r ® re

from inside the ellipse yields

v8 5 d exp3 2 1
2

1 2 0.1re 2
1/2

z 4 , (2.25)

where re 2 r 5 z Ea
1/4, z . 0 and d must also be determined.

If we denote the E 0 1 E1/2 azimuthal velocity over the slope without the E1/4 correction
by vs and that inside the ellipse by v i, we can match the total azimuthal velocities and the
pressures from the two regions at r 5 re to obtain

d 5 c 1 v s 2 v i, (2.26)

and

c 5
v i 2 v s

1 1 3
re

1 1 21/4

2

1 2 0.1re

a

Ho 4
1/2

. (2.27)

The pressure � eld including the O(E 1/4) contribution is continuous with continuous
velocities (derivatives) and appears in Figure 5 for E 5 3.15 3 102 5. The qualitative
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agreement with experiment is pretty good, though the observed � eld has more curvature in
the interior of the basin.

This linear solution gives surprisingly good quantitative results for the velocities. The
northward velocity in the interior appears in (2.11) and for the case calculated above gives
v/a D V 5 0.0145 which agrees with the measured values to within 1%. (The experiments
yielded a value of v that is largely independent of Ro.) It would appear from Figure 6a that
the calculated zonal velocity is smaller than the observed. However, the experiments
generally showed a consistent increase in zonal velocity with increasing Ro whereas
Figure 6a indicates a decrease as Ro increases from 0.004 to 0.008. The motion is so slow
for Ro 5 0.004 that we have to consider the measured values of u (note the large scatter) to
be unreliable. From our observation that u increases with increasing Ro we expect the
correct observed values to lie just above the (more easily measured) ones for Ro 5 0.008 in
Figure 6a and that would bring them very close to the calculated values. Over the slope at
midlatitude, theory and observations of the azimuthal velocity agree very well, as seen in
Figure 6b.

All of these comparisons are made for an experiment with Ro 5 0.004, the smallest value
that enabled us to avoid spurious effects due to convection and resulting density strati� ca-
tion. The criterion that the � ow be linear is that Ro be much smaller than E1/2, which in this
case is 0.0056, so even for Ro 5 0.004 nonlinear effects in the experiment are not

Figure 5. Streamlines ( p contours) for the same system as in Figure 4 but with O(E 1/4) correctionsto
match values of p and v across the ellipse so that the discontinuities in velocity of Figure 4 are
eliminated.
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negligible. Support for that conclusion comes also from the numerical experiment for the
vertical wall case shown in Figure 2 where the observed overshoot is due to nonlinearity.

3. Discussion

Physically, the system is completely consistent with expected dynamical behavior when
the lid is forced with positive relative vorticity. A column of � uid starting off at the
southeast extremity of its trajectory in the interior is driven northward by the imposed
positive vorticity and it moves westward (because of the basic � ow along D-shaped
contours) to arrive at a point at the northwest extremity. Along this trajectory it has
acquired positive potential vorticity (a positive value of f/H, i.e., a decreasing value of H )
from the rotating lid. It then joins smoothly (no change in depth) onto the slope and is
driven anticlockwise along the constant depth contour at which it entered the slope region
until it reaches the vicinity of the point at which it originated. During this anticlockwise
motion on the slope the Ekman transport toward the rim generated at the top of the column
is exactly balanced by the inward Ekman layer transport along the bottom.The geostrophic

Figure 6. (a) Calculated and observed zonal (u) velocities as functions of y along x 5 0. (b)
Calculated and observed meridional (v) velocities as functions of x along y 5 0.
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column then turns inward toward the interior and in the process crosses depth contours
while dissipating the positive vorticity that it acquired from the lid while crossing the
interior. As it descends the slope, it lengthens until it reaches its original column depth.

One difference between this � ow and the more familiar one in the tank without a slope is
that most of the effective dissipation takes place here on the eastern side rather than along a
western boundary layer. The physical balances are the same, but the � uid column takes
advantage of the geostrophic contour to move inviscidly to the south and east before
dissipation sets in. The slope provides a short-circuit path by which a particle of � uid is
delivered from the point where it has maximum potential vorticity to the region where it
can dissipate that vorticity and regain its initial position and depth. There is no comparable
region in the model with vertical walls or in the traditional wind-driven ocean circulation

Figure 6. (Continued)
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model on the beta plane, where a column of � uid starts dissipating the vorticity that it has
acquired as soon as it reaches the point where the vorticity is a maximum.

However, addition of side wall topography to the oceanic model provides a path that can
function in a manner similar to the one encountered here. Salmon (1992) derived a result
similar to ours for a model of ocean circulation with a slope along the western boundary. In
his case the dissipation region was at the southwestern corner where � ow coming in from
the north is turned around and delivered to a lower latitude.All of the dissipation in his case
takes place in that southwestern corner where the initial value of the potential vorticity is
restored before the column exits the corner. Apart from the different geometry our model
and his behave in exactly the same way. The implication for ocean circulation is that the
dissipation of the vorticity input by the wind may take place in regions far removed from
the ones traditionally assumed. The actual geometry of the topography will determine
where that takes place.

The foregoing theory is based on the assumption that the � ows in the interior of the basin
and over the slope can be analyzed separately and that the two can be joined to give a
complete solution by matching along the ellipse dividing the two regions. A check on this
procedure can be obtained as part of a numerical solution of the entire region which is
currently being carried out.
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