176 research outputs found

    Tractarian Objects and Logical Categories

    Get PDF
    It has been much debated whether Tractarian objects are what Russell would have called particulars or whether they include also properties and relations. This paper claims that the debate is misguided: there is no logical category such that Wittgenstein intended the reader of the Tractatus to understand his objects either as providing examples of or as not providing examples of that category. This is not to say that Wittgenstein set himself against the very idea of a logical category: quite the contrary. However, where Russell presents his logical variety of particulars and the various types of universal, and Frege presents his of objects and the various types of function, Wittgenstein denies the propriety of such a priori expositions. Wittgenstein envisages a variety of logical types of entity but insists that the nature of these types is something to be discovered only through analysis

    Study of the nucleon-induced preequilibrium reactions in terms of the Quantum Molecular Dynamics

    Get PDF
    The preequilibrium (nucleon-in, nucleon-out) angular distributions of 27^{27}Al, 58^{58}Ni and 90^{90}Zr have been analyzed in the energy region from 90 to 200 MeV in terms of the Quantum Moleculear Dynamics (QMD) theory. First, we show that the present approach can reproduce the measured (p,xp') and (p,xn) angular distributions leading to continuous final states without adjusing any parameters. Second, we show the results of the detailed study of the preequilibrium reaction processes; the step-wise contribution to the angular distribution, comparison with the quantum-mechanical Feshbach-Kerman-Koonin theory, the effects of momentum distribution and surface refraction/reflection to the quasifree scattering. Finally, the present method was used to assess the importance of multiple preequilibrium particle emission as a function of projectile energy up to 1 GeV.Comment: 22pages, Revex is used, 10 Postscript figures are available by request from [email protected]

    Measurement of Motion of Carotid Bifurcation Plaques

    Get PDF
    Video loops of B-mode ultrasound images of 35 carotid bifurcation plaques were obtained (4 symptomatic and 31 asymptomatic) from patients with carotid bifurcation atherosclerosis. Video loops were classified visually as showing concordant (n=22) or discordant motion (n=13). Concordant plaques were characterized by uniform orientation of motion throughout the cardiac cycle. Discordant plaques exhibited significant spread in motion orientation at different parts of the cardiac cycle, especially at systole. We developed a real-time motion analysis system that applies Farneback's method to estimate velocities between consecutive video frames. For our purposes, we allow a 100msec time interval between the video frames used in the analysis. This approach allows us to analyze significant motions associated with a larger time interval. Over each video frame, we measure the spread of the motion orientation around the dominant orientation. For each video, we look at the spreads of the motion orientations for different motion magnitudes. Using these motion-spread measurements, we can quantify discordant movement. The sum of maximum fan widths for the median pixel motions 5 to 3 (SMFW5to3) had a median value of 100 degrees and interquartile range (IQR) of (80, 110) degrees for the concordant plaques and 270, (230, 430) for the discordant plaques (P <; 0.001). Thus, we have a new tool to differentiate between concordant and discordant plaques

    Mycobacterium bovis shedding patterns from experimentally infected calves and the effect of concurrent infection with bovine viral diarrhoea virus

    Get PDF
    Concurrent infection of cattle with bovine viral diarrhoea virus (BVDV) and Mycobacterium bovis is considered to be a possible risk factor for onward transmission of bovine tuberculosis (BTB) in infected cattle and is known to compromise diagnostic tests. A comparison is made here of M. bovis shedding (i.e. release) characteristics from 12 calves, six experimentally co-infected with BVDV and six infected with M. bovis alone, using simple models of bacterial replication. These statistical and mathematical models account for the intermittent or episodic nature of shedding, the dynamics of within-host bacterial proliferation and the sampling distribution from a given shedding episode. We show that while there are distinct differences among the shedding patterns of calves given the same infecting dose, there is no statistically significant difference between the two groups of calves. Such differences as there are, can be explained solely in terms of the shedding frequency, but with all calves potentially excreting the same amount of bacteria in a given shedding episode post-infection. The model can be thought of as a process of the bacteria becoming established in a number of discrete foci of colonization, rather than as a more generalized infection of the respiratory tract. In this case, the variability in the shedding patterns of the infected calves can be explained solely by differences in the number of foci established and shedding being from individual foci over time. Should maximum exposure on a particular occasion be a critical consideration for cattle-to-cattle transmission of BTB, cattle that shed only intermittently may still make an important contribution to the spread and persistence of the disease

    Transverse lattice calculation of the pion light-cone wavefunctions

    Get PDF
    We calculate the light-cone wavefunctions of the pion by solving the meson boundstate problem in a coarse transverse lattice gauge theory using DLCQ. A large-N_c approximation is made and the light-cone Hamiltonian expanded in massive dynamical fields at fixed lattice spacing. In contrast to earlier calculations, we include contributions from states containing many gluonic link-fields between the quarks.The Hamiltonian is renormalised by a combination of covariance conditions on boundstates and fitting the physical masses M_rho and M_pi, decay constant f_pi, and the string tension sigma. Good covariance is obtained for the lightest 0^{-+} state, which we identify with the pion. Many observables can be deduced from its light-cone wavefunctions.After perturbative evolution,the quark valence structure function is found to be consistent with the experimental structure function deduced from Drell-Yan pi-nucleon data in the valence region x > 0.5. In addition, the pion distribution amplitude is consistent with the experimental distribution deduced from the pi gamma^* gamma transition form factor and diffractive dissociation. A new observable we calculate is the probability for quark helicity correlation. We find a 45% probability that the valence-quark helicities are aligned in the pion.Comment: 27 pages, 9 figure

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure

    Get PDF
    Background: Age-related clonal hematopoiesis of indeterminate potential (CHIP), defined as clonally expanded leukemogenic sequence variations (particularly in DNMT3A, TET2, ASXL1, and JAK2) in asymptomatic individuals, is associated with cardiovascular events, including recurrent heart failure (HF). Objectives: This study sought to evaluate whether CHIP is associated with incident HF. Methods: CHIP status was obtained from whole exome or genome sequencing of blood DNA in participants without prevalent HF or hematological malignancy from 5 cohorts. Cox proportional hazards models were performed within each cohort, adjusting for demographic and clinical risk factors, followed by fixed-effect meta-analyses. Large CHIP clones (defined as variant allele frequency >10%), HF with or without baseline coronary heart disease, and left ventricular ejection fraction were evaluated in secondary analyses. Results: Of 56,597 individuals (59% women, mean age 58 years at baseline), 3,406 (6%) had CHIP, and 4,694 developed HF (8.3%) over up to 20 years of follow-up. CHIP was prospectively associated with a 25% increased risk of HF in meta-analysis (hazard ratio: 1.25; 95% confidence interval: 1.13-1.38) with consistent associations across cohorts. ASXL1, TET2, and JAK2 sequence variations were each associated with an increased risk of HF, whereas DNMT3A sequence variations were not associated with HF. Secondary analyses suggested large CHIP was associated with a greater risk of HF (hazard ratio: 1.29; 95% confidence interval: 1.15-1.44), and the associations for CHIP on HF with and without prior coronary heart disease were homogenous. ASXL1 sequence variations were associated with reduced left ventricular ejection fraction. Conclusions: CHIP, particularly sequence variations in ASXL1, TET2, and JAK2, represents a new risk factor for HF

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore