469 research outputs found

    Impact of deprivation and comorbidity on outcomes in emergency general surgery : an epidemiological study

    Get PDF
    © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Peer reviewedPublisher PD

    A phase 3 multicenter, prospective, open-label efficacy and safety study of immune globulin (human) 10% caprylate/chromatography purified in patients with myasthenia gravis exacerbations

    Get PDF
    Background: Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission. Exacerbations may involve increasing bulbar weakness and/or sudden respiratory failure, both of which can be critically disabling. Management of MG exacerbations includes plasma exchange and intravenous immunoglobulin (IVIG); they are equally effective, but patients experience fewer side effects with IVIG. The objective of this study was to assess the efficacy and safety of immune globulin caprylate/chromatography purified (IGIV-C) in subjects with MG exacerbations. Methods: This prospective, open-label, non-controlled 28-day clinical trial was conducted in adults with MG Foundation of America class IVb or V status. Subjects received IGIV-C 2 g/kg over 2 consecutive days (1 g/kg/day) and were assessed for efficacy/safety on Days 7, 14, 21, and 28. The primary efficacy endpoint was the change from Baseline in quantitative MG (QMG) score to Day 14. Secondary endpoints of clinical response, Baseline to Day 14, included at least a 3-point decrease in QMG and MG Composite and a 2-point decrease in MG-activities of daily living (MG-ADL). Results: Forty-nine subjects enrolled. The change in QMG score at Day 14 was significant (p < 0.001) in the Evaluable (-6.4, n = 43) and Safety (-6.7, n = 49) populations. Among evaluable subjects, Day 14 response rates were 77, 86, and 88% for QMG, MG Composite, and MG-ADL, respectively. IGIV-C showed good tolerability with no serious adverse events. Conclusions: The results of this study show that IGIV-C was effective, safe, and well tolerated in the treatment of MG exacerbations

    Impact of Interatrial Shunts on Invasive Hemodynamics and Exercise Tolerance in Patients With Heart Failure

    Get PDF
    Approximately 50% of patients with heart failure have preserved ejection fraction. Although a wide variety of conditions cause or contribute to heart failure with preserved ejection fraction, elevated left ventricular filling pressures, particularly during exercise, are common to all causes. Acute elevation in left-sided filling pressures promotes lung congestion and symptoms of dyspnea, while chronic elevations often lead to pulmonary vascular remodeling, right heart failure, and increased risk of mortality. Pharmacologic therapies, including neurohormonal modulation and drugs that modify the nitric oxide/cyclic GMP-protein kinase G pathway have thus far been limited in reducing symptoms or improving outcomes in patients with heart failure with preserved ejection fraction. Hence, alternative means of reducing the detrimental rise in left-sided heart pressures are being explored. One proposed method of achieving this is to create an interatrial shunt, thus unloading the left heart at rest and during exercise. Currently available studies have shown 3- to 5-mm Hg decreases of pulmonary capillary wedge pressure during exercise despite increased workload. The mechanisms underlying the hemodynamic changes are just starting to be understood. In this review we summarize results of recent studies aimed at elucidating the potential mechanisms of improved hemodynamics during exercise tolerance following interatrial shunt implantation and the current interatrial shunt devices under investigation

    Anomalous Breaking of Anisotropic Scaling Symmetry in the Quantum Lifshitz Model

    Full text link
    In this note we investigate the anomalous breaking of anisotropic scaling symmetry in a non-relativistic field theory with dynamical exponent z=2. On general grounds, one can show that there exist two possible "central charges" which characterize the breaking of scale invariance. Using heat kernel methods, we compute these two central charges in the quantum Lifshitz model, a free field theory which is second order in time and fourth order in spatial derivatives. We find that one of the two central charges vanishes. Interestingly, this is also true for strongly coupled non-relativistic field theories with a geometric dual described by a metric and a massive vector field.Comment: 26 pages; major revision (results were unaffected), published versio

    Density of Superfluid Helium Droplets

    Full text link
    The classical integral cross sections of large superfluid 4He_N droplets and the number of atoms in the droplets (N=10^3-10^4) have been measured in molecular beam scattering experiments. These measurements are found to be in good agreement with the cross sections predicted from density functional calculations of the radial density distributions with a 10-90 % surface thickness of 5.7\AA. By using a simple model for the density profile of the droplets a thickness of about 6-8\AA is extracted directly from the data.Comment: 27 pages, REVTeX, 5 postscript figure

    Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis : a phase 2 randomized control trial

    Get PDF
    OBJECTIVE: To explore the clinical efficacy and safety of subcutaneous (SC) rozanolixizumab, an anti-neonatal Fc receptor humanized monoclonal antibody, in patients with generalized myasthenia gravis (gMG). METHODS: In this phase 2a, randomized, double-blind, placebo-controlled, 2-period, multicenter trial (NCT03052751), patients were randomized (1:1) in period 1 (days 1-29) to 3 once-weekly (Q1W) SC infusions of rozanolixizumab 7 mg/kg or placebo. In period 2 (days 29-43), patients were re-randomized to either rozanolixizumab 7 mg/kg or 4 mg/kg (3 Q1W SC infusions), followed by an observation period (days 44-99). Primary endpoint was change from baseline to day 29 in Quantitative Myasthenia Gravis (QMG) score. Secondary endpoints were change from baseline to day 29 in MG-Activities of Daily Living (MG-ADL) and MG-Composite (MGC) scores and safety. RESULTS: Forty-three patients were randomized (rozanolixizumab 21, placebo 22 [period 1]). Least squares (LS) mean change from baseline to day 29 for rozanolixizumab vs placebo was as follows: QMG (LS mean -1.8 vs -1.2, difference -0.7, 95% upper confidence limit [UCL] 0.8; p = 0.221; not statistically significant), MG-ADL (LS mean -1.8 vs -0.4, difference -1.4, 95% UCL -0.4), and MGC (LS mean -3.1 vs -1.2, difference -1.8, 95% UCL 0.4) scores. Efficacy measures continued to improve with rozanolixizumab 7 mg/kg in period 2. The most common adverse event in period 1 was headache (rozanolixizumab 57%, placebo 14%). CONCLUSION: Whereas change from baseline in QMG was not statistically significant, the data overall suggest rozanolixizumab may provide clinical benefit in patients with gMG and was generally well tolerated. Phase 3 evaluation is ongoing (NCT03971422). CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with gMG, rozanolixizumab is well-tolerated, but did not significantly improve QMG score

    A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 7 (2017): 2449–2460, doi:10.1002/ece3.2863.Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%–50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization—over an order of magnitude or more than warming-induced rates—significantly alter the capacity for tundra CO2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.NASA Terrestrial Ecology Grant Number: NNX12AK83G; National Science Foundation Division of Graduate Education Grant Number: DGE-11-4415

    Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease

    Get PDF
    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress
    corecore