130 research outputs found

    CombiROC : an interactive web tool for selecting accurate marker combinations of omics data

    Get PDF
    Diagnostic accuracy can be improved considerably by combining multiple markers, whose performance in identifying diseased subjects is usually assessed via receiver operating characteristic (ROC) curves. The selection of multimarker signatures is a complicated process that requires integration of data signatures with sophisticated statistical methods. We developed a user-friendly tool, called CombiROC, to help researchers accurately determine optimal markers combinations from diverse omics methods. With CombiROC data from different domains, such as proteomics and transcriptomics, can be analyzed using sensitivity/specificity filters: the number of candidate marker panels rising from combinatorial analysis is easily optimized bypassing limitations imposed by the nature of different experimental approaches. Leaving to the user full control on initial selection stringency, CombiROC computes sensitivity and specificity for all markers combinations, performances of best combinations and ROC curves for automatic comparisons, all visualized in a graphic interface. CombiROC was designed without hard-coded thresholds, allowing a custom fit to each specific data: this dramatically reduces the computational burden and lowers the false negative rates given by fixed thresholds. The application was validated with published data, confirming the marker combination already originally described or even finding new ones. CombiROC is a novel tool for the scientific community freely available at http://CombiROC.eu

    Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits

    Get PDF
    Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible

    Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations

    Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study

    Get PDF
    To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-

    A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple-Negative Breast Cancer

    Get PDF
    The Tn antigen is a well-known tumor-associated carbohydrate determinant, often incorporated in glycopeptides to develop cancer vaccines. Herein, four copies of a conformationally constrained mimetic of the antigen TnThr (GalNAc-Thr) were conjugated to the adjuvant CRM197, a protein licensed for human use. The resulting vaccine candidate, mime[4]CRM elicited a robust immune response in a triple-negative breast cancer mouse model, correlated with high frequency of CD4+ T cells and low frequency of M2-type macrophages, which reduces tumor progression and lung metastasis growth. Mime[4]CRM-mediated activation of human dendritic cells is reported, and the proliferation of mime[4]CRM-specific T cells, in cancer tissue and peripheral blood of patients with breast cancer, is demonstrated. The locked conformation of the TnThr mimetic and a proper presentation on the surface of CRM197 may explain the binding of the conjugate to the anti-Tn antibody Tn218 and its efficacy to fight cancer cells in mice

    PerR Confers Phagocytic Killing Resistance and Allows Pharyngeal Colonization by Group A Streptococcus

    Get PDF
    The peroxide response transcriptional regulator, PerR, is thought to contribute to virulence of group A Streptococcus (GAS); however, the specific mechanism through which it enhances adaptation for survival in the human host remains unknown. Here, we identify a critical role of PerR-regulated gene expression in GAS phagocytosis resistance and in virulence during pharyngeal infection. Deletion of perR in M-type 3 strain 003Sm was associated with reduced resistance to phagocytic killing in human blood and by murine macrophages in vitro. The increased phagocytic killing of the perR mutant was abrogated in the presence of the general oxidative burst inhibitor diphenyleneiodonium chloride (DPI), a result that suggests PerR-dependent gene expression counteracts the phagocyte oxidative burst. Moreover, an isogenic perR mutant was severely attenuated in a baboon model of GAS pharyngitis. In competitive infection experiments, the perR mutant was cleared from two animals at 24 h and from four of five animals by day 14, in sharp contrast to wild-type bacteria that persisted in the same five animals for 28 to 42 d. GAS genomic microarrays were used to compare wild-type and perR mutant transcriptomes in order to characterize the PerR regulon of GAS. These studies identified 42 PerR-dependent loci, the majority of which had not been previously recognized. Surprisingly, a large proportion of these loci are involved in sugar utilization and transport, in addition to oxidative stress adaptive responses and virulence. This finding suggests a novel role for PerR in mediating sugar uptake and utilization that, together with phagocytic killing resistance, may contribute to GAS fitness in the infected host. We conclude that PerR controls expression of a diverse regulon that enhances GAS resistance to phagocytic killing and allows adaptation for survival in the pharynx

    A 12-month follow-up of the immune response to SARS-CoV-2 primary vaccination: evidence from a real-world study

    Get PDF
    A real-world population-based longitudinal study, aimed at determining the magnitude and duration of immunity induced by different types of vaccines against COVID-19, started in 2021 by enrolling a cohort of 2,497 individuals at time of their first vaccination. The study cohort included both healthy adults aged ≤65 years and elderly subjects aged >65 years with two or more co-morbidities. Here, patterns of anti-SARS-CoV-2 humoral and cell-mediated specific immune response, assessed on 1,182 remaining subjects, at 6 (T6) and 12 months (T12) after the first vaccine dose, are described. At T12 median anti-Spike IgG antibody levels were increased compared to T6. The determinants of increased anti-Spike IgG were the receipt of a third vaccine dose between T6 and T12 and being positive for anti-Nucleocapside IgG at T12, a marker of recent infection, while age had no significant effect. The capacity of T12 sera to neutralize in vitro the ancestral B strain and the Omicron BA.5 variant was assessed in a subgroup of vaccinated subjects. A correlation between anti-S IgG levels and sera neutralizing capacity was identified and higher neutralizing capacity was evident in healthy adults compared to frail elderly subjects and in those who were positive for anti-Nucleocapside IgG at T12. Remarkably, one third of T12 sera from anti-Nucleocapside IgG negative older individuals were unable to neutralize the BA.5 variant strain. Finally, the evaluation of T-cell mediated immunity showed that most analysed subjects, independently from age and comorbidity, displayed Spike-specific responses with a high degree of polyfunctionality, especially in the CD8 compartment. In conclusion, vaccinated subjects had high levels of circulating antibodies against SARS-CoV-2 Spike protein 12 months after the primary vaccination, which increased as compared to T6. The enhancing effect could be attributable to the administration of a third vaccine dose but also to the occurrence of breakthrough infection. Older individuals, especially those who were anti-Nucleocapside IgG negative, displayed an impaired capacity to neutralize the BA.5 variant strain. Spike specific T-cell responses, able to sustain immunity and maintain the ability to fight the infection, were present in most of older and younger subjects assayed at T1

    Genome Wide Expression Profiling Reveals Suppression of Host Defence Responses during Colonisation by Neisseria meningitides but not N. lactamica

    Get PDF
    Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria

    ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer

    Get PDF
    Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are highly activated in cancer and involved in tumorigenesis and resistance to anti-cancer therapy. UPR is becoming a promising target of anti-cancer therapies. Thus, the identification of UPR components that are highly expressed in cancer could offer new therapeutic opportunity. In this study, we demonstrate that Endoplasmic Reticulum Metallo Protease 1 (ERMP1) is broadly expressed in a high percentage of breast, colo-rectal, lung, and ovary cancers, regardless of their stage and grade. Moreover, we show that loss of ERMP1 expression significantly hampers proliferation, migration and invasiveness of cancer cells. Furthermore, we show that this protein is an important player in the UPR and defense against oxidative stress. ERMP1 expression is strongly affected by reticular stress induced by thapsigargin and other oxidative stresses. ERMP1 silencing during reticular stress impairs the activation of PERK, a key sensor of the UPR activation. Loss of ERMP1 also prevents the expression of GRP78/BiP, a UPR stress marker involved in the activation of the survival pathway. Finally, ERMP1 silencing in cells exposed to hypoxia leads to inhibition of the Nrf2-mediated anti-oxidant response and to reduction of accumulation of HIF-1, the master transcription factor instructing cells to respond to hypoxic stress. Our results suggest that ERMP1 could act as a molecular starter to the survival response induced by extracellular stresses. Moreover, they provide the rationale for the design of ERMP1-targeting drugs that could act by inhibiting the UPR initial adaptive response of cancer cells and impair cell survival

    Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival

    Get PDF
    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism
    corecore