1,175 research outputs found

    Weak Long-Ranged Casimir Attraction in Colloidal Crystals

    Full text link
    We investigate the influence of geometric confinement on the free energy of an idealized model for charge-stabilized colloidal suspensions. The mean-field Poisson-Boltzmann formulation for this system predicts pure repulsion among macroionic colloidal spheres. Fluctuations in the simple ions' distribution provide a mechanism for the macroions to attract each other at large separations. Although this Casimir interaction is long-ranged, it is too weak to influence colloidal crystals' dynamics.Comment: 5 pages 2 figures ReVTe

    C IV BAL disappearance in a large SDSS QSO sample

    Full text link
    Broad absorption lines (BALs) in the spectra of quasi-stellar objects (QSOs) originate from outflowing winds along our line of sight; winds are thought to originate from the inner regions of the QSO accretion disk, close to the central supermassive black hole (SMBH). Winds likely play a role in galaxy evolution and aid the accretion mechanism onto the SMBH. BAL equivalent widths can change on typical timescales from months to years; such variability is generally attributed to changes in the covering factor and/or in the ionization level of the gas. We investigate BAL variability, focusing on BAL disappearance. We analyze multi-epoch spectra of more than 1500 QSOs -the largest sample ever used for such a study- observed by different programs from the Sloan Digital Sky Survey-I/II/III (SDSS), and search for disappearing C IV BALs. The spectra rest-frame time baseline ranges from 0.28 to 4.9 yr; the source redshifts range from 1.68 to 4.27. We detect 73 disappearing BALs in the spectra of 67 sources. This corresponds to 3.9% of disappearing BALs, and 5.1% of our BAL QSOs exhibit at least one disappearing BAL. We estimate the average lifetime of a BAL along our line of sight (~ 80-100 yr), which appears consistent with the accretion disk orbital time at distances where winds are thought to originate. We inspect properties of the disappearing BALs and compare them to the properties of our main sample. We also investigate the existence of a correlation in the variability of multiple troughs in the same spectrum, and find it persistent at large velocity offsets between BAL pairs, suggesting that a mechanism extending on a global scale is necessary to explain the phenomenon. We select a more reliable sample of disappearing BALs following Filiz Ak et al. (2012), where a subset of our sample was analyzed, and compare the findings from the two works, obtaining generally consistent results.Comment: 22 pages, 9 figures. Accepted for publication in A&

    Observation of Cold Collisions between Trapped Ions and Trapped Atoms

    Get PDF
    We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb+^+ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several isotopes for collision energies down to 400 neV (5 mK). The measured rate coefficient of 6×10106 \times 10^{-10} cm3^{3}s1^{-1}, constant over four orders of magnitude in collision energy, is in good agreement with that derived from a semiclassical Langevin model for an atomic polarizability of 143 a.u.Comment: 4 pages, 4 figures; Revision 1/V2: Revised in response to PRL Referees' comment

    Structure of Flux Line Lattices with Weak Disorder at Large Length Scales

    Full text link
    Dislocation-free decoration images containing up to 80,000 vortices have been obtained on high quality Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} superconducting single crystals. The observed flux line lattices are in the random manifold regime with a roughening exponent of 0.44 for length scales up to 80-100 lattice constants. At larger length scales, the data exhibit nonequilibrium features that persist for different cooling rates and field histories.Comment: 4 pages, 3 gif images, to appear in PRB rapid communicatio

    A proposed metric for assessing the measurement quality of individual microarrays

    Get PDF
    BACKGROUND: High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. RESULTS: We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. CONCLUSION: We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements

    The Sloan Digital Sky Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines

    Full text link
    Quasar emission lines are often shifted from the systemic velocity due to various dynamical and radiative processes in the line-emitting region. The level of these velocity shifts depends both on the line species and on quasar properties. We study velocity shifts for the line peaks of various narrow and broad quasar emission lines relative to systemic using a sample of 849 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. The coadded (from 32 epochs) spectra of individual quasars have sufficient signal-to-noise ratio (SNR) to measure stellar absorption lines to provide reliable systemic velocity estimates, as well as weak narrow emission lines. The sample also covers a large dynamic range in quasar luminosity (~2 dex), allowing us to explore potential luminosity dependence of the velocity shifts. We derive average line peak velocity shifts as a function of quasar luminosity for different lines, and quantify their intrinsic scatter. We further quantify how well the peak velocity can be measured for various lines as a function of continuum SNR, and demonstrate there is no systematic bias in the line peak measurements when the spectral quality is degraded to as low as SNR~3 per SDSS pixel. Based on the observed line shifts, we provide empirical guidelines on redshift estimation from [OII]3728, [OIII]5008, [NeV]3426, MgII, CIII], HeII1640, broad Hbeta, CIV, and SiIV, which are calibrated to provide unbiased systemic redshifts in the mean, but with increasing intrinsic uncertainties of 46, 56, 119, 205, 233, 242, 400, 415, and 477 km/s, in addition to the measurement uncertainties. These more realistic redshift uncertainties are generally much larger than the formal uncertainties reported by the redshift pipelines for spectroscopic quasar surveys, and demonstrate the infeasibility of measuring quasar redshifts to better than ~200 km/s with only broad lines.Comment: matched to the published version; minor changes and conclusions unchange

    Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface

    Get PDF
    We describe direct imaging measurements of the collective and relative diffusion of two colloidal spheres near a flat plate. The bounding surface modifies the spheres' dynamics, even at separations of tens of radii. This behavior is captured by a stokeslet analysis of fluid flow driven by the spheres' and wall's no-slip boundary conditions. In particular, this analysis reveals surprising asymmetry in the normal modes for pair diffusion near a flat surface.Comment: 4 pages, 4 figure

    Correction to “Temperature-Dependent High-Speed Dynamics of Terahertz Quantum Cascade Lasers”

    Get PDF
    Corrections to author affiliation information is presented in the above named paper

    Bragg- and Moving-glasses: a theory of disordered vortex lattices

    Full text link
    We study periodic lattices, such as vortex lattices in type II superconductors in a random pinning potential. For the static case we review the prediction that the phase diagram of such systems consists of a topologically ordered Bragg glass phase, with quasi long range translational order, at low fields. This Bragg glass phase undergoes a transition at higher fields into another glassy phase, with dislocations, or a liquid. This proposition is compatible with a large number of experimental results on BSCCO or Thalium compounds. Further experimental consequences of our results and relevance to other systems will be discussed. When such vortex systems are driven by an external force, we show that, due to periodicity in the direction transverse to motion, the effects of static disorder persist even at large velocity. In d=3d=3, at weak disorder, or large velocity the lattice forms a topologically ordered glass state, the ``moving Bragg glass'', an anisotropic version of the static Bragg glass. The lattice flows through well-defined, elastically coupled, static channels. We determine the roughness of the manifold of channels and the positional correlation functions. The channel structure also provides a natural starting point to study the influence of topological defects such as dislocations. In d=2d=2 or at strong disorder the channels can decouple along the direction of motion leading to a ``smectic'' like flow. We also show that such a structure exhibits an effective transverse critical pinning force due to barriers to transverse motion, and discuss the experimental consequences of this effect.Comment: Proceedings of M2S-HTSC-V conference (Beijing, Feb 97) to be published in Physica C; 4 pages, 3 figures, uses espcrc2.st

    Phase diagrams of flux lattices with disorder

    Full text link
    We review the prediction, made in a previous work [Phys. Rev. B 52 (1995)], that the phase diagram of type II superconductors consists of a topologically ordered Bragg glass phase at low fields undergoing a transition at higher fields into a vortex glass or a liquid. We estimate the position of the phase boundary using a Lindemann criterion. We find that the proposed phenomenology is compatible with recent experiments on superconductors.Comment: 7 pages 2 figures, uses epsfi
    corecore