52 research outputs found

    “Excellence R Us”: university research and the fetishisation of excellence

    Get PDF
    The rhetoric of “excellence” is pervasive across the academy. It is used to refer to research outputs as well as researchers, theory and education, individuals and organisations, from art history to zoology. But does “excellence” actually mean anything? Does this pervasive narrative of “excellence” do any good? Drawing on a range of sources we interrogate “excellence” as a concept and find that it has no intrinsic meaning in academia. Rather it functions as a linguistic interchange mechanism. To investigate whether this linguistic function is useful we examine how the rhetoric of excellence combines with narratives of scarcity and competition to show that the hypercompetition that arises from the performance of “excellence” is completely at odds with the qualities of good research. We trace the roots of issues in reproducibility, fraud, and homophily to this rhetoric. But we also show that this rhetoric is an internal, and not primarily an external, imposition. We conclude by proposing an alternative rhetoric based on soundness and capacity-building. In the final analysis, it turns out that that “excellence” is not excellent. Used in its current unqualified form it is a pernicious and dangerous rhetoric that undermines the very foundations of good research and scholarship

    Modelling Cell Polarization Driven by Synthetic Spatially Graded Rac Activation

    Get PDF
    The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization

    Frequent Arousal from Hibernation Linked to Severity of Infection and Mortality in Bats with White-Nose Syndrome

    Get PDF
    White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered

    Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal

    Full text link

    Gompertzian growth pattern correlated with phenotypic organization of colon carcinoma, malignant glioma and non-small cell lung carcinoma cell lines

    No full text
    In the current study we present a Gompertzian model for cell growth as a function of cell phenotype using six human tumour cell lines (A‐549, NCI‐H596, NCI‐H520, HT‐29, SW‐620 and U‐251). Monolayer cells in exponential growth at various densities were quantified over a week by sulforhodamine B staining assay to produce cell‐growth curves. A Gompertz equation was fitted to experimental data to obtain, for each cell line, three empirical growth parameters (initial cell density, cell‐growth rate and carrying capacity – the maximal cell density). A cell‐shape parameter named deformation coefficient D (a morphological relationship among spreading and confluent cells) was established and compared by regression analysis with the relative growth rate parameter K described by the Gompertz equation. We have found that coefficient D is directly proportional to the growth parameter K. The fit curve significantly matches the empirical data (P < 0.05), with a correlation coefficient of 0.9152. Therefore, a transformed Gompertzian growth function was obtained accordingly to D. The degree of correlation between the Gompertzian growth parameter and the coefficient D allows a new interpretation of the growth parameter K on the basis of morphological measurements of a set of tumour cell types, supporting the idea that cell‐growth kinetics can be modulated by phenotypic organization of attached cells

    Kilombo: a Kilobot simulator to enable effective research in swarm robotics

    No full text
    The Kilobot is a widely used platform for investigation of swarm robotics. Physical Kilobots are slow moving and require frequent recalibration and charging, which significantly slows down the development cycle. Simulators can speed up the process of testing, exploring and hypothesis generation, but usually require time consuming and error-prone translation of code between simulator and robot. Moreover, code of different nature often obfuscates direct comparison, as well as determination of the cause of deviation, between simulator and actual robot swarm behaviour. To tackle these issues we have developed a C-based simulator that allows those working with Kilobots to use the same programme code in both the simulator and the physical robots. Use of our simulator, coined Kilombo, significantly simplifies and speeds up development, given that a simulation of 1000 robots can be run at a speed 100 times faster than real time on a desktop computer, making high-throughput pre-screening possible of potential algorithms that could lead to desired emergent behaviour. We argue that this strategy, here specifically developed for Kilobots, is of general importance for effective robot swarm research. The source code is freely available under the MIT license

    Kilombo: a Kilobot simulator to enable effective research in swarm robotics

    Get PDF
    The Kilobot is a widely used platform for investigation of swarm robotics. Physical Kilobots are slow moving and require frequent recalibration and charging, which significantly slows down the development cycle. Simulators can speed up the process of testing, exploring and hypothesis generation, but usually require time consuming and error-prone translation of code between simulator and robot. Moreover, code of different nature often obfuscates direct comparison, as well as determination of the cause of deviation, between simulator and actual robot swarm behaviour. To tackle these issues we have developed a C-based simulator that allows those working with Kilobots to use the same programme code in both the simulator and the physical robots. Use of our simulator, coined Kilombo, significantly simplifies and speeds up development, given that a simulation of 1000 robots can be run at a speed 100 times faster than real time on a desktop computer, making high-throughput pre-screening possible of potential algorithms that could lead to desired emergent behaviour. We argue that this strategy, here specifically developed for Kilobots, is of general importance for effective robot swarm research. The source code is freely available under the MIT license

    Spatiotemporal coordination of cell division and growth during organ morphogenesis

    No full text
    A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study
    • 

    corecore