10 research outputs found

    Discovery of long-period magnetic field oscillations and motions in isolated sunspots

    Full text link
    We analyse the temporal evolution of the inclination component of the magnetic field vector for the penumbral area of 25 isolated sunspots. Compared to previous works, the use of data from the HMI instrument aboard the SDO observatory facilitates the study of very long time series (≈\approx1 week), compared to previous works, with a good spatial and temporal resolution. We used the wavelet technique and we found some filamentary-shaped events with large wavelet power. Their distribution of periods is broad, ranging from the lower limit for this study of 48 minutes up to 63 hours. An interesting property of these events is that they do not appear homogeneously all around the penumbra but they seem to concentrate at particular locations. The cross-comparison of these wavelet maps with AIA data shows that the regions where these events appear are visually related to the coronal loops that connect the outer penumbra to one or more neighbouring opposite polarity flux patches

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007–2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ -ray fluxes is very variable. The γ -ray flux variations show a fair correlation with the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectr al shape and suggest a shift of the synchrotron peak up to a factor of ~50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight

    Long-term evolution of three light bridges developed on the same sunspot

    No full text
    One important feature of sunspots is the presence of light bridges. These structures are elongated and bright (as compared to the umbra) features that seem to be related to the formation and evolution of sunspots. In this work, we studied the long-term evolution and the stratification of different atmospheric parameters of three light bridges formed in the same host sunspot by different mechanisms. To accomplish this, we used data taken with the GREGOR Infrared Spectrograph installed at the GREGOR telescope. These data were inverted to infer the physical parameters of the atmosphere where the observed spectral profiles were formed of the three light bridges. We find that, in general, the behaviour of the three light bridges is typical of this kind of structure with the magnetic field strength, inclination, and temperature values between the values at the umbra and the penumbra. We also find that they are of a significantly non-magnetic character (particularly at the axis of the light bridges) as it is deduced from the filling factor. In addition, within the common behaviour of the physical properties of light bridges, we observe that each one exhibits a particular behaviour. Another interesting result is that the light bridge cools down, the magnetic field decreases, and the magnetic field lines get more inclined higher in the atmosphere. Finally, we studied the magnetic and non-magnetic line-of-sight velocities of the light bridges. The former shows that the magnetic component is at rest and, interestingly, its variation with optical depth shows a bi-modal behaviour. For the line-of-sight velocity of the non-magnetic component, we see that the core of the light bridge is at rest or with shallow upflows and clear downflows sinking through the edges

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    No full text
    We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ~50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.© 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The Abastumani team acknowledges financial support by Shota Rustaveli NSF under contract FR/577/6-320/13. The research at BU was supported in part by US National Science Foundation grant AST-1615796 and NASA Fermi Guest Investigator grant NNX14AQ58G. This study makes use of 43 GHz VLBA data from the VLBA-BU Blazar Monitoring Program (VLBA-BUBLAZAR; http://www.bu.edu/blazars/VLBAproject.html), funded by NASA through the Fermi Guest Investigator Program. The PRISM camera at the Lowell Observatory was developed by K. Janes et al. at the BU and Lowell Observatory, with funding from the NSF, BU and Lowell Observatory. This research has made use of data from the MOJAVE data base, which is maintained by the MOJAVE team (Lister et al. 2009). The St. Petersburg University team acknowledges support from Russian RFBR grant 15-02-00949 and St. Petersburg University research grant 6.38.335.2015. This paper is partly based on observations carried out at the German Spanish Calar Alto Observatory, which is jointly operated by the MPIA and the IAA-CSIC. IA research is supported by a Ramon y Cajal grant of the Spanish Ministerio de Economia y Competitividad (MINECO). Acquisition of the MAPCAT data was supported in part by MINECO through grants AYA2010-14844, AYA2013-40825-P and AYA2016-80889-P, and by the Regional Government of Andalucia through grant P09-FQM-4784. This research was partially supported by the Scientific Research Fund of the Bulgarian Ministry of Education and Sciences under grants DO 02-137 (BIn-13/09) and DN 08/1. The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology - Hellas and the Max-Planck-Institut fur Extrater-restrische Physik. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgaria Academy of Sciences, via the bilateral joint research project 'Observations of ICRF radio-sources visible in optical domain' (the head is Dr G. Damljanovic). This work is a part of the Projects No 176011 ('Dynamics and kinematics of celestial bodies and systems'), No 176004 ('Stellar physics') and No 176021 ('Visible and invisible matter in nearby galaxies: theory and observations') supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. The Serbian station is the Astronomical Station Vidojevica (ASV) with the 60-cm ASV telescope (and from this year, the 1.4-m ASV one). This research was supported partly by funds of the project RD-08-81 of the Shumen University.Peer Reviewe

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    No full text
    © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectr al shape and suggest a shift of the synchrotron peak up to a factor of ~50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectr al shape and suggest a shift of the synchrotron peak up to a factor of ~50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    No full text
    © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectr al shape and suggest a shift of the synchrotron peak up to a factor of ~50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight
    corecore