30 research outputs found

    Capacités de passage de lignées de puceron du pois, Acyrthosiphon pisum Harris, sur 2 plantes hôtes, et variabilité du comportement alimentaire

    No full text
    *INRA-Unité de Zoologie - 86600 Lusignan Diffusion du document : INRA-Unité de Zoologie - 86600 Lusignan Diplôme : BT

    Can the SCD test and terminal uridine nick-end labeling by flow cytometry technique (TUNEL/FCM) be used interchangeably to measure sperm DNA damage in routine laboratory practice?

    No full text
    Background: Numerous tests have been proposed to evaluate sperm DNA integrity. To assess the sperm chromatin dispersion (SCD) test in an andrology laboratory, twenty-five men attending Clermont-Ferrand (France) University Hospital's Center for Reproductive Medicine were recruited. Sperm DNA damage was measured in the same semen samples using the SCD test and the Terminal Uridine Nick-end Labeling by flow cytometry technique (TUNEL/FCM) after density gradient centrifugation. Results: SCD test reliability between readings, readers or slides was clearly established with very high agreement between measurements (Intraclass correlation coefficient (ICC) at 0.97, 0.95 and 0.98 respectively). Despite very good agreement between the SCD test and TUNEL/FCM (ICC at 0.94), the SCD test tended to slightly but significantly underestimate DNA damage compared with TUNEL (p = 0.0127). This systematic difference between the two techniques was - 3.39 +/- 1.45% (mean +/- SE). Conclusions: Andrology laboratories using the SCD test to measure sperm DNA damage need to know that it appears to give slightly underestimated measurements compared to TUNEL/FCM. However, this systematic underestimation is very small in amplitude. Both techniques give almost perfectly congruent results. Our study underlines the importance for each laboratory to validate its method to assess sperm DNA damage before implementing it in routine andrology lab practice

    Extracellular vesicle-based vaccine platform displaying native viral envelope proteins elicits a robust anti-SARS-CoV-2 response in mice

    No full text
    Extracellular vesicles (EVs) emerge as essential mediators of intercellular communication. DNA vaccines encoding antigens presented on EVs efficiently induce T-cell responses and EV-based vaccines containing the Spike (S) proteins of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) are highly immunogenic in mice. Thus, EVs may serve as vaccine platforms against emerging diseases, going beyond traditional strategies, with the antigen displayed identically to the original protein embedded in the viral membrane and presented as such to the immune system. Compared to their viral and pseudotyped counterparts, EV-based vaccines overcome many safety issues including pre-existing immunity against these vectors. Here, we applied our technology in natural EV’s engineering, to express the S proteins of SARS-CoV-2 embedded in the EVs, which mimic the virus with its fully native spikes. Immunizations with a two component CoVEVax vaccine, comprising DNA vector (DNA S-EV ) primes, allowing in situ production of Spike harbouring EVs, and a boost using S-EVs produced in mammalian cells, trigger potent neutralizing and cellular responses in mice, in the absence of any adjuvants. CoVEVax would be the prototype of vaccines, where the sole exchange of the envelope proteins on EVs leads to the generation of new vaccine candidates against emerging viruses

    Interglacial History of a Palaeo-lake and Regional Environment: A Multi-proxy Study of a Permafrost Deposit from Bolshoy Lyakhovsky Island, Arctic Siberia

    Get PDF
    Chironomid, pollen, and rhizopod records from a permafrost sequence at the Bolshoy Lyakhovsky Island (New Siberian Archipelago) document the evolution of a thermokarst palaeo-lake and environmental conditions in the region during the Last Interglacial (MIS 5e, ca. 130120 ka). Open Poaceae and Artemisia associations dominated vegetation at the beginning of the interglacial period, ca. 130 ka. Rare shrub thickets (Salix, Betula nana, Alnus fruticosa) grew in more protected and wetter places as well. Saalian ice wedges started to melt during this time, resulting in the formation of an initial thermokarst water body. The high percentage of semi-aquatic chironomids suggests that a peatland-pool palaeo-biotope existed at the site, when initial water body started to form. A distinct decrease in semi-aquatic chironomid taxa and an increase in lacustrine ones point to a gradual pooling of water in basin, which could in turn create thaw a permanent pond during the subsequent period. The highest relative abundance of Chironomus and Procladius reflects an existence of unfrozen water remaining under the ice throughout the ice-covered period during the later stage of palaeo-lake development. Chironomid record points to three successive stages during the water body evolution: (1) a peatland pool; (2) a pond (i.e., less deep than the maximum ice-cover thickness); and (3) a shallow lake (i.e., more deep than the maximum ice-cover thickness). The evolutionary trend of palaeo-lake points to intensive thermokarst processes occurring in the region during the Last Interglacial. Shrub tundra communities with Alnus fruticosa, Betula nana dominated the vegetation during the interglacial optimum that is evidenced by pollen record. The climate was relatively moist and warm. The results of this study suggest that quantitative chironomid-based temperature reconstructions from the Arctic thermokarst ponds/lakes may be problematic owing to other key environmental factors, such as prolonged periods of winter anoxia and local hydrological/geomorphological processes, controlling the chironomid assemblage
    corecore