69 research outputs found

    Protein Folding, Binding and Evolution : PDZ domains and paralemmins as model systems

    No full text
    Proteins present at the synapse need to be multitasking in order to perform all vital functions in this limited space. In this thesis I have analyzed the function and evolution of such proteins, focusing on the PDZ domain and the paralemmin family. The PDZ domains bind to a wide variety of interaction partners. The affinity for each partner is regulated by residues at the binding site, but also through intradomain allostery. How this intradomain allostery is transferred to the binding site is not established. I here show that side chain interactions can explain all transfer of intradomain allostery in three analyzed PDZ domains. A circularly permuted PDZ domain has an identical set of amino acids as the original protein and a very similar structure with only a few perturbed side chains. By using the circular permutant I show that a slight alteration in the position of a side chain leads to a corresponding change in allosteric signal. I further study the folding of several PDZ domains and show that they all fold via a conserved folding mechanism, supporting the notion that the final structure has a part in deciding folding mechanism. The folding mechanism of the circularly permuted PDZ domain is conserved compared to the original protein illustrating how circular permutations can be tolerated through evolution. The multifunctionality of paralemmins probably lies in their highly flexible structures. I have studied the evolution of the paralemmins and found that the four mammalian paralemmins arose in the two whole-genome duplications that occurred early in the vertebrate evolution. The fact that all four paralemmins have survived evolution since the gene duplications suggests that they have important functions, possibly in the development of the nervous system. Synaptic proteins are crucial for many biological processes, and their misfolding implicated in many diseases. The results presented here shed light on the mechanisms of action of the synaptic proteins and will help us to understand how they generate disease

    The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain

    No full text
    Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a b-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding

    Determination of formaldehyde by the "green" rapid test method

    No full text
    Formaldehīda noteikšana ar “zaļo” eksprestestu metodi. Rieksta E., zinātniskais vadītājs Dr. chem., doc. Ģībietis J. Bakalaura darbs, 43 lappuses, 17 attēli, 11 tabulas, 58 literatūras avoti, 2 pielikumi. Latviešu valodā. Darbā apkopota informācija par formaldehīda ķīmiskajā un fizikālajām īpašībām, tā iegūšanu, izmantošu un ietekmi uz cilvēka organismu, kā arī noteikšanu ar kvantitatīvās analīzes un eksprestestu metodēm. Eksperimentāli iegūti kalibrēšanas grafiki, spektrofotometriski nosakot formaldehīdu ar hromotropskābi sērskābes vidē un “zaļo” metodi. Izveidots eksprestests formaldehīda noteikšanai ūdens šķīdumos, kura pamatā ir modificēta “zaļā” metode, kas tiek asistēta ar mikroviļnu enerģiju.Determination of formaldehyde by the “green” rapid test method. Rieksta E., supervisor Dr. chem., doc. Ģībietis J. Bachelor’s thesis. 43 pages, 17 figures, 11 tables, 58 literature references, 2 appendices. In Latvian. The work summarizes the information on the chemical and physical properties of formaldehyde, its production, use and impact on the human body, as well as its determination by quantitative analysis and rapid test methods. Calibration graphs were obtained experimentally by spectrophotometric determination of formaldehyde with chromotropic acid in sulfuric acid and the "green" method. A rapid test for the determination of formaldehyde in aqueous solutions has been developed, based on modified “green” method assisted by microwave energy

    Pinpointing Brain TREM2 Levels in Two Mouse Models of Alzheimer's Disease

    No full text
    PURPOSE: The triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by brain microglia. Microglial activation, as observed in Alzheimer's disease (AD) as well as in transgenic mice expressing human amyloid-beta, appears to increase soluble TREM2 (sTREM2) levels in CSF and brain. In this study, we used two different transgenic mouse models of AD pathology and investigated the potential of TREM2 to serve as an in vivo biomarker for microglial activation in AD. PROCEDURES: We designed and generated a bispecific antibody based on the TREM2-specific monoclonal antibody mAb1729, fused to a single-chain variable fragment of the transferrin receptor binding antibody 8D3. The 8D3-moiety enabled transcytosis of the whole bispecific antibody across the blood-brain barrier. The bispecific antibody was radiolabeled with I-125 (ex vivo) or I-124 (PET) and administered to transgenic AD and wild-type (WT) control mice. Radioligand retention in the brain of transgenic animals was compared to WT mice by isolation of brain tissue at 24 h or 72 h, or with in vivo PET at 24 h, 48 h, and 72 h. Intrabrain distribution of radiolabeled mAb1729-scFv8D3CL was further studied by autoradiography, while ELISA was used to determine TREM2 brain concentrations. RESULTS: Transgenic animals displayed higher total exposure, calculated as the AUC based on SUV determined at 24h, 48h, and 72h post injection, of PET radioligand [124I]mAb1729-scFv8D3CL than WT mice. However, differences were not evident in single time point PET images or SUVs. Ex vivo autoradiography confirmed higher radioligand concentrations in cortex and thalamus in transgenic mice compared to WT, and TREM2 levels in brain homogenates were considerably higher in transgenic mice compared to WT. CONCLUSION: Antibody-based radioligands, engineered to enter the brain, may serve as PET radioligands to follow changes of TREM2 in vivo, but antibody formats with faster systemic clearance to increase the specific signal in relation to that from blood in combination with antibodies showing higher affinity for TREM2 must be developed to further progress this technique for in vivo use

    The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain.

    No full text
    Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding

    Evolution of the Vertebrate Paralemmin Gene Family : Ancient Origin of Gene Duplicates Suggests Distinct Functions

    Get PDF
    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates

    Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor

    No full text
    The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to A beta protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aa immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain

    Efficient and inexpensive transient expression of multispecific multivalent antibodies in Expi293 cells

    No full text
    Background: Immunotherapy is a very fast expanding field within drug discovery and, hence, rapid and inexpensive expression of antibodies would be extremely valuable. Antibodies are, however, difficult to express. Multifunctional antibodies with additional binding domains further complicate the expression. Only few protocols describe the production of tetravalent bispecific antibodies and all with limited expression levels. Methods: Here, we describe a protocol that can produce functional tetravalent, bispecific antibodies at around 22 mg protein/l to a low cost. The expression system is based on the Expi293 cells, which have been adapted to grow in denser cultures than HEK293 cells and gives higher expression yields. The new protocol transfects the Expi293 cells with PEI (which has a negligible cost). Results: The protocol has been used to generate multiple variants of tetra-and hexavalent bispecific antibodies with yields of around 22 mg protein/l within 10 days. All materials are commercially available and the implementation of the protocol is inexpensive and straightforward. The bispecific antibodies generated in our lab were capable of binding to all antigens with similar affinity as the original antibody. Two of the bispecific antibodies have also been used in transgenic mice as positron emission tomography (PET) ligands to successfully detect amyloid-beta (A beta) aggregates in vivo. Conclusions: This protocol is the first describing transfection of the human Expi293 cells with PEI. It can be used to generate functional multi-specific antibodies in high amounts. The use of biological drugs, and in particular multispecific antibodies, is rapidly increasing, hence improved protocols such as the one presented here are highly valuable
    corecore