568 research outputs found
New scaling for the alpha effect in slowly rotating turbulence
Using simulations of slowly rotating stratified turbulence, we show that the
alpha effect responsible for the generation of astrophysical magnetic fields is
proportional to the logarithmic gradient of kinetic energy density rather than
that of momentum, as was previously thought. This result is in agreement with a
new analytic theory developed in this paper for large Reynolds numbers. Thus,
the contribution of density stratification is less important than that of
turbulent velocity. The alpha effect and other turbulent transport coefficients
are determined by means of the test-field method. In addition to forced
turbulence, we also investigate supernova-driven turbulence and stellar
convection. In some cases (intermediate rotation rate for forced turbulence,
convection with intermediate temperature stratification, and supernova-driven
turbulence) we find that the contribution of density stratification might be
even less important than suggested by the analytic theory.Comment: 10 pages, 9 figures, revised version, Astrophys. J., in pres
The supernova-regulated ISM. II. The mean magnetic field
The origin and structure of the magnetic fields in the interstellar medium of
spiral galaxies is investigated with 3D, non-ideal, compressible MHD
simulations, including stratification in the galactic gravity field,
differential rotation and radiative cooling. A rectangular domain, 1x1x2
kpc^{3} in size, spans both sides of the galactic mid-plane. Supernova
explosions drive transonic turbulence. A seed magnetic field grows
exponentially to reach a statistically steady state within 1.6 Gyr. Following
Germano (1992) we use volume averaging with a Gaussian kernel to separate
magnetic field into a mean field and fluctuations. Such averaging does not
satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The
mean field thus obtained varies in both space and time. Growth rates differ for
the mean-field and fluctuating field and there is clear scale separation
between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc,
respectively.Comment: 5 pages, 10 figures, submitted to Monthly Notices Letter
Low-mass planet migration in three-dimensional wind-driven inviscid discs: a negative corotation torque
We present simulations of low-mass planet–disc interactions in inviscid three-dimensional discs. We show that a wind-driven laminar accretion flow through the surface layers of the disc does not significantly modify the migration torque experienced by embedded planets. More importantly, we find that 3D effects lead to a dramatic change in the behaviour of the dynamical corotation torque compared to earlier 2D theory and simulations. Although it was previously shown that the dynamical corotation torque could act to slow and essentially stall the inward migration of a low-mass planet, our results in 3D show that the dynamical corotation torque has the complete opposite effect and speeds up inward migration. Our numerical experiments implicate buoyancy resonances as the cause. These have two effects: (i) they exert a direct torque on the planet, whose magnitude relative to the Lindblad torque is measured in our simulations to be small; (ii) they torque the gas librating on horseshoe orbits in the corotation region and drive evolution of its vortensity, leading to the negative dynamical corotation torque. This indicates that at low turbulent viscosity, the detailed vertical thermal structure of the protoplanetary disc plays an important role in determining the migration behaviour of embedded planets. If this result holds up under a more refined treatment of disc thermal evolution, then it has important implications for understanding the formation and early evolution of planetary systems
GM crops and gender issues
Correspondence in the December issue by Jonathan Gressel not only states that gender issues in rural settings have not been adequately addressed with respect to weed control biotech but also asserts that such technology can increase the quality of life of rural women in developing countries. Improved weed control is a labor-saving technology that can result in less employment in a labor surplus rural economy. Often in rural areas, wage income is the main source of income and an important determinant of the quality of life, particularly where employment opportunities are generally limited. Apart from soil preparation, planting and weeding, harvesting is also 'femanual' work that can generate more employment if yields are higher. Biotech can enhance the quality of life of women but only if the technology is associated with overall generation of rural employment
Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow
Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, non-linear magnetohydrodynamic process whose study is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows
On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones
(abridged) Accretion in protoplanetary discs is thought to be driven by [...]
turbulence via the magnetorotational instability (MRI). Recent work has shown
that a planetesimal swarm embedded in a fully turbulent disc is subject to
strong excitation of the velocity dispersion, leading to collisional
destruction of bodies with radii R_p < 100 km. Significant diffusion of
planetesimal semimajor axes also arises, leading to large-scale spreading of
the planetesimal population throughout the inner regions of the protoplanetary
disc, in apparent contradiction of constraints provided by the distribution of
asteroids within the asteroid belt. In this paper, we examine the dynamics of
planetesimals embedded in vertically stratified turbulent discs, with and
without dead zones. Our main aims are to examine the turbulent excitation of
the velocity dispersion, and the radial diffusion, of planetesimals in these
discs. We employ three dimensional MHD simulations [...], along with an
equilibrium chemistry model [...] We find that planetesimals in fully turbulent
discs develop large random velocities that will lead to collisional
destruction/erosion for bodies with sizes below 100 km, and undergo radial
diffusion on a scale \sim 2.5 au over a 5 Myr disc life time. But planetesimals
in a dead zone experience a much reduced excitation of their random velocities,
and equilibrium velocity dispersions lie between the disruption thresholds for
weak and strong aggregates for sizes R_p < 100 km. We also find that radial
diffusion occurs over a much reduced length scale \sim 0.25 au over the disc
life time, this being consistent with solar system constraints. We conclude
that planetesimal growth via mutual collisions between smaller bodies cannot
occur in a fully turbulent disc. By contrast, a dead zone may provide a safe
haven in which km-sized planetesimals can avoid mutual destruction through
collisions.Comment: 18 pages, 13 figures, 3 tables, MNRAS in press, minor corrections to
match the published versio
Evolutionary and ecological insights from herbicide‐resistant weeds: what have we learned about plant adaptation, and what is left to uncover?
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149516/1/nph15723_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149516/2/nph15723.pd
- …