14 research outputs found

    Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

    Full text link
    Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7_{0.7}Sr0.3_{0.3}MnO3_3 thin films and LaFeO3_3/La0.7_{0.7}Sr0.3_{0.3}MnO3_3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed in the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets

    Spin-Flop Coupling and Exchange Bias in Embedded Complex Oxide Micromagnets

    Full text link
    The magnetic domains of embedded micromagnets with 2  μm×2  μm dimensions defined in epitaxial La0.7Sr0.3MnO3 (LSMO) thin films and LaFeO3/LSMO bilayers were investigated using soft x-ray magnetic microscopy. Square micromagnets aligned with their edges parallel to the easy axes of LSMO provide an ideal experimental geometry for probing the influence of interface exchange coupling on the magnetic domain patterns. The observation of unique domain patterns not reported for ferromagnetic metal microstructures, namely divergent antiferromagnetic vortex domains and "Z"-type domains, suggests the simultaneous presence of spin-flop coupling and local exchange bias in this system

    Consequences of High Adatom Energy during Pulsed Laser Deposition of La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>

    No full text
    The impact of the adatom energy on the stoichiometry, surface morphology, and crystalline twinning during pulsed laser deposition of La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> is studied. We show that although nonthermal growth using highly energetic adatoms results in very smooth ultrathin films, it also causes preferential resputtering of Mn and a surface roughening transition with increasing film thickness. This can be circumvented by carefully tuning the adatom energy into thermal growth, resulting in more Mn rich samples and a delayed roughening transition. Furthermore, we demonstrate that the crystalline twinning can be controlled by controlling the adatom energy. Hence, a detailed control of the adatom energy during growth opens for better stoichiometry control as well as surface quality

    Effects of array shape and disk ellipticity in dipolar-coupled magnetic metamaterials

    No full text
    Two-dimensional lattices of dipolar-coupled thin film ferromagnetic nanodisks give rise to emergent superferromagnetic (SFM) order when the spacing between dots becomes sufficiently small. In this paper, we define micron-sized arrays of permalloy nanodisks arranged on a hexagonal lattice. The arrays were shaped as hexagons, squares, and rectangles to investigate finite-size effects in the SFM domain structure for such arrays. The resulting domain patterns were examined using x-ray magnetic circular dichroism photoemission electron microscopy. At room temperature, we find these SFM metamaterials to be below their blocking temperature. Distinct differences were found in the magnetic switching characteristics of horizontally and vertically oriented rectangular arrays. The results are corroborated by micromagnetic simulations

    Tailoring Spin Textures in Complex Oxide Micromagnets.

    No full text
    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magnetic parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films
    corecore