31 research outputs found

    Groundwater Autochthonous Microbial Communities as Tracers of Anthropogenic Pressure Impacts: Example from a Municipal Waste Treatment Plant (Latium, Italy)

    Get PDF
    The groundwater behavior at a municipal solid waste disposal dump, located in Central Italy, was studied using a multi-parameter monitoring over 1 year consisting of 4 seasonal samples. The hydrological and hydrogeological dynamics of water circulation, microbiological parameters (microbial abundance and cell viability of the autochthonous microbial community), dissolved organic carbon, and several contaminants were evaluated and related to the geological structures in both two and three dimensions and used for geostatistical analysis in order to obtain 3D maps. Close relationships between geological heterogeneity, water circulation, pollutant diffusion, dissolved organic carbon, and cell viability were revealed. The highest cell viability values were found with dissolved organic carbon (DOC) values ≤0.5 mg/L; above this value, DOC negatively affected the microbial community. The highest DOC values were detected in groundwater at some sampling points within the site indicating its probable origin from the waste disposal dump. Although legislation limits for the parameters measured were not exceeded (except for a contaminant in one piezometer), the 1-year multi-parameter monitoring approach made it possible to depict both the dynamics and the complexity of the groundwater flux and, with "non-legislative parameters" such as microbial cell viability and DOC, identify the points with the highest vulnerability and their origin. This approach is useful for identifying the most vulnerable sites in a groundwater body

    Celle a combustibile microbiche terrestri: uno strumento efficace nel recupero di suoli contaminati e nella produzione di energia.

    Get PDF
    Una cella a combustibile microbica (MFC) è un sistema bio-elettrochimico che utilizza un microrganismo attivo come biocatalizzatore per la produzione di elettricità. Essa è costituita da due comparti, uno anodico ed uno catodico, separati da una membrana di scambio protonico. L’energia chimica di legame, disponibile grazie alla presenza di un substrato biodegradabile, viene trasformata direttamente in energia elettrica per azione microbica, che catalizza la rimozione degli elettroni dal substrato. I batteri presenti nella camera anodica, o comunque nel mezzo in cui è immerso l’anodo, sono in grado di convertire un’enorme varietà di substrati organici (acetato, glucosio, cellulosa, reflui di varia origine, contaminanti organici) in CO2, acqua ed energia. Tra le MFC, le Celle a Combustibile Microbiche Terrestri (Terrestrial Microbial Fuel Cells - TMFC), hanno come elettrolita il suolo. Esso è una matrice molto più complessa rispetto all’acqua, variando nella composizione granulometrica, nella capacita di ritenzione idrica, nella capacità di scambio cationico, nonché nella distribuzione dei contaminanti; pertanto le TMFC sono dei dispositivi di cui è ancora necessario esplorare tutte le potenzialità di applicazione per il recupero di suoli contaminati

    Fertilization and Soil Microbial Community: A Review

    No full text
    The present paper reviews the most recent advances regarding the effects of chemical and organic fertilizers on soil microbial communities. Based on the results from the articles considered, some details are presented on how the use of various types of fertilizers affects the composition and activity of soil microbial communities. Soil microbes have different responses to fertilization based on differences in the total carbon (C), nitrogen (N) and phosphorus (P) contents in the soil, along with soil moisture and the presence of plant species. These articles show that the use of chemical fertilizers changes the abundance of microbial populations and stimulates their growth thanks to the nutrient supply added. Overall, however, the data revealed that chemical fertilizers have no significant influence on the richness and diversity of the bacteria and fungi. Instead, the abundance of individual bacterial or fungal species was sensitive to fertilization and was mainly attributed to the changes in the soil chemical properties induced by chemical or organic fertilization. Among the negative effects of chemical fertilization, the decrease in enzymatic activity has been highlighted by several papers, especially in soils that have received the largest amounts of fertilizers together with losses in organic matter

    Bio-electrochemical system depollution capabilities and monitoring applications. Models, applicability, advanced bio-based concept for predicting pollutant degradation and microbial growth kinetics via gene regulation modelling

    No full text
    Microbial fuel cells (MFC) are an emerging technology for waste, wastewater and polluted soil treatment. In this manuscript, pollutants that can be treated using MFC systems producing energy are presented. Furthermore, the applicability of MFC in environmental monitoring is described. Common microbial species used, release of genome sequences, and gene regulation mechanisms, are discussed. However, although scaling-up is the key to improving MFC systems, it is still a difficult challenge. Mathematical models for MFCs are used for their design, control and optimization. Such models representing the system are presented here. In such comprehensive models, microbial growth kinetic approaches are essential to designing and predicting a biosystem. The empirical and unstructured Monod and Monod-type models, which are traditionally used, are also described here. Understanding and modelling of the gene regulatory network could be a solution for enhancing knowledge and designing more efficient MFC processes, useful for scaling it up. An advanced bio-based modelling concept connecting gene regulation modelling of specific metabolic pathways to microbial growth kinetic models is presented here; it enables a more accurate prediction and estimation of substrate biodegradation, microbial growth kinetics, and necessary gene and enzyme expression. The gene and enzyme expression prediction can also be used in synthetic and systems biology for process optimization. Moreover, various MFC applications as a bioreactor and bioremediator, and in soil pollutant removal and monitoring, are explored

    Belowground microbiota and the health of tree crops

    Get PDF
    Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops

    Effects of Wood Amendments on the Degradation of Terbuthylazine and on Soil Microbial Community Activity in a Clay Loam Soil

    Get PDF
    12 páginas, 5 figuras.-- The original publication is available at www.springerlink.comThe herbicide terbuthylazine is widely used within the EU; however, its frequent detection in surface and groundwater, together with its intrinsic toxicological properties, may pose a risk both for human and environmental health. Organic amendments have recently been proposed as a possible herbicide sorbent in soil, in order to limit herbicide movement from soil to water. The environmental fate of terbuthylazine depends not only in its mobility but also in its persistence. The latter is directly dependent on microbial degradation. For this reason, the effects of pine and oak residues on terbuthylazine soil microbial community functioning and on the potential of this community for terbuthylazine degradation were studied. For this purpose, degradation kinetics, soil dehydrogenase activity and the number of live bacteria were assessed in a clay loam soil treated with terbuthylazine and either amended with pine or oak wood or unamended (sterilised and non-sterilised). At day 65, 85%of the herbicide applied still persisted in the sterile soil, 73 % in the pine-amended one and 63 % in the oak-amended and unamended ones. Pine residues increased the sorption of terbuthylazine to soil and hampered microbial degradation owing to its high terbuthylazine sorption capacity and a decrease in the bioavailability of the herbicide. On the contrary, in the presence of oak residues, the herbicide sorption did not increase significantly. The overall results confirm the active role of the soil microbial community in terbuthylazine degradation in amended and unamended soils and in a liquid enrichment culture performed using an aliquot of the same soil as the inoculum. In this clay loamsoil, in the absence of amendments, the herbicide was found to be quite persistent (t1/2>95 days), while in the enrichment culture, the same natural soil bacterial community was able to halve terbuthylazine in 24 days. The high terbuthylazine persistence in this soil was presumably ascribable to its texture and in particular to the mineralogy of the clay fraction.This work was funded by the CSIC/CNR Bilateral Agreement ‘Adsorption and degradation of pesticides in soils modified with low cost biomaterials: Study of the microbial communities responsible for the biodegradation’ (project reference 2006IT0022).Peer reviewe

    Degradation of a fluoroquinolone antibiotic in an urbanized stretch of the River Tiber

    No full text
    The widespread detection of antibiotics in terrestrial and aquatic systems has engendered significant scientific and regulatory concern. Overall, knowledge concerning the ecotoxicology and sub-lethal effects in water is scarce, but some experimental studies show that antibiotics can induce pathogen resistance and they can also have detrimental effects on natural microbial communities and their key functions. The main aim of this study was to investigate the occurrence of the biodegradation and photodegradation processes of the fluoroquinolone ciprofloxacin (CIP) in the River Tiber waters, in a stretch highly impacted from human pressure. Two set of microcosms consisting of river water containing the natural microbial community and treated with 500 μg/L of CIP in absence or presence of UV-light were performed. Moreover, some microcosms were filled with river water previously sterilized and then treated with the antibiotic. The combined experimental set made it possible to evaluate if the antibiotic CIP could be photodegraded and/or biodegraded. CIP residual concentrations were measured over time by using HPLC coupled to fluorescence detection (FLD) and the effects of the antibiotic on the natural microbial community were assessed in terms of live cell abundance. The key role of light in CIP disappearance was confirmed, but also its biodegradation in natural river water was demonstrated. In fact, differently from other experiments we found a higher degradation rate (DT50= 10.4 d), in presence of both light and the natural river bacterial populations than in the same sterilized river water (DT50= 18.4 d). Moreover, even in the dark, a partial CIP biodegradation was also observed (DT50= 177 d). The overall results were supported by the increase in live cell numbers with the decrease of CIP concentrations both in the dark and light condition

    The Role of the Bacterial Community of an Agroecosystem in Simazine Degradation

    No full text
    The use of pesticides and fertilizers in agricultural practice is the main source of soil and groundwater contamination. S-Triazines are among the most used herbicides in the world for selective weed control in several types of crops. The homeostatic capability of an agroecosystem to remove a triazinic herbicide, simazine, was assessed in microcosms treated with the herbicide in presence/absence of urea fertilizer. The latter, as well as a fertilizer, is also one of the last by-products before simazine mineralization. The biodegradation, in terms of disappearance of 50% of the initial concentration (DT50), was compared to the degradation and metabolite formation occurring in sterilized soil. Moreover, the bacterial community response was assessed in terms of abundance and community structure by the epifluorescence direct count method and fluorescence in situ hybridization. The results show that the microbial community has a primary role in simazine degradation and that this process is due to the presence of a microbial pool working in succession and of which the metabolism may be modulated by exogenous sources of nitrogen, like urea. The latter influences the degradative pathway with a greater formation and accumulation of the desethyl-simazine metabolite, which is a hazardous contaminant of soil and groundwater ecosystems, as well as its parent compound

    Effects of Sulfamethoxazole on Growth and Antibiotic Resistance of A Natural Microbial Community

    No full text
    Diffuse environmental antibiotic and antibiotic resistance gene contamination is increasing human and animal exposure to these emerging compounds with a consequent risk of reduction in antibiotic effectiveness. The present work investigated the effect of the antibiotic sulfamethoxazole (SMX) on growth and antibiotic resistance genes of a microbial community collected from an anaerobic digestion plant fed with cattle manure. Digestate samples were used as inoculum for concentration-dependent experiments using SMX at various concentrations. The antibiotic concentrations affecting the mixed microbial community in terms of growth and spread of resistant genes (sul1, sul2) were investigated through OD (Optical Density) measures and qPCR assays. Moreover, SMX biodegradation was assessed by LC-MS/MS analysis. The overall results showed that SMX concentrations in the range of those found in the environment did not affect the microbial community growth and did not select for antibiotic-resistant gene (ARG) maintenance or spread. Furthermore, the microorganisms tested were able to degrade SMX in only 24 h. This study confirms the complexity of antibiotic resistance spread in real matrices where different microorganisms coexist and suggests that antibiotic biodegradation needs to be included for fully understanding the resistance phenomena among bacteria
    corecore