198 research outputs found

    Coexistence of anomalous field effect and mesoscopic conductance fluctuations in granular aluminium

    Full text link
    We perform electrical field effect measurements at 4 K on insulating granular aluminium thin films. When the samples size is reduced below 100 micrometers, reproducible and stable conductance fluctuations are seen as a function of the gate voltage. Our results suggest that these fluctuations reflect the incomplete self-averaging of largely distributed microscopic resistances. We also study the anomalous field effect (conductance dip) already known to exit in large samples and its slow conductance relaxation in the presence of the conductance fluctuations. Within our measurements accuracy, the two phenomena appear to be independent of each other, like two additive contributions to the conductance. We discuss the possible physical meaning of this independence and in particular whether or not this observation is in favor of an electron glass interpretation of slow conductance anomaly relaxations.Comment: 16 pages, 26 figure

    Charging of highly resistive granular metal films

    Full text link
    We have used the Scanning Kelvin probe microscopy technique to monitor the charging process of highly resistive granular thin films. The sample is connected to two leads and is separated by an insulator layer from a gate electrode. When a gate voltage is applied, charges enter from the leads and rearrange across the sample. We find very slow processes with characteristic charging times exponentially distributed over a wide range of values, resulting in a logarithmic relaxation to equilibrium. After the gate voltage has been switched off, the system again relaxes logarithmically slowly to the new equilibrium. The results cannot be explained with diffusion models, but most of them can be understood with a hopping percolation model, in which the localization length is shorter than the typical site separation. The technique is very promising for the study of slow phenomena in highly resistive systems and will be able to estimate the conductance of these systems when direct macroscopic measurement techniques are not sensitive enough.Comment: 8 pages, 7 figure

    Szombathely, avagy lelkek a ponyván

    Get PDF

    Paraconductivity of granular Al films at high reduced temperatures and magnetic fields

    Get PDF
    International audienceThe electrical conductivity induced near the superconducting transition by thermal fluctuations was measured in different granular aluminum films. The seemingly anomalous behavior at high reduced temperatures and magnetic fields is explained by taking into account a total-energy cutoff in the superconducting fluctuation spectrum in both the direct (Aslamazov-Larkin) and the indirect (anomalous Maki-Thompson) contributions to the fluctuation effects. The analysis allowed a reliable determination of the coherence length amplitudes, which resulted to be much larger (20-48 nm) than the grains size (5-10 nm). This suggests that the grains are strongly Josephson-coupled, while the T c value is still as high as twice the bulk value. These results could contribute to identifying the mechanisms enhancing T c in these materials

    Electronic and physico-chemical properties of nanmetric boron delta-doped diamond structures

    Get PDF
    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called deltadoped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6K<T<450 K). Depending on the sample, metallic or non-metallic behavior was observed. A hopping conduction mechanism with an anomalous hopping exponent was detected in the non-metallic samples. All metallic delta-doped layers exhibited the same mobility value, around 3.660.8 cm2/Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm.14 page

    Growth of GaInTlAs layers on InP by molecular beam epitaxy

    Get PDF
    International audienceGrowth of GaInTlAs alloys on InP001 has been attempted by solid source molecular beam epitaxy. Thallium incorporation into Ga 1x In x As matrices was studied as a function of substrate temperature, arsenic overpressure, matrix composition, and growth rate. At high temperatures 350 °C thallium evaporates, whereas at intermediary temperatures 270-350 °C thallium segregates into droplets on the surface. Only in the low temperature range 180-260 °C can thallium be incorporated in some conditions, leading to mirror-like surfaces. Up to 18% Tl content was incorporated into a Ga 0.70 In 0.30 As matrix and up to 40% Tl into a GaAs matrix. For these high Tl concentrations, Tl droplets are avoided and Tl incorporation is achieved only when using high arsenic pressures. However, this limits surface adatom diffusion and leads to amorphous, polycrystalline, or twinned materials. Finally, a narrow window for single-crystal growth has been found for low Tl contents 4% using optimized growth conditions with low V/III pressure ratios and high growth rates

    Do drugs interact together in cardiovascular prevention? A meta-analysis of powerful or factorial randomized controlled trials.

    Get PDF
    To explore whether preventive cardiovascular drugs (antihypertensive, antiplatelet, lipid lowering and hypoglycemic agents) interact together in cardiovascular prevention. We searched PubMed®, Web of science™, Embase and Cochrane library for powerful randomized placebo-controlled trials (&gt;1000 patients). We explored whether drug effect on major vascular events changed according to cross-exposure to other drug classes or to cardiovascular risk factors (hypertension or type 2 diabetes), through a meta-analysis of relative odds ratio computed by trial subgroups. A significant interaction was suggested from confidence intervals of the ratio of odds ratios, when they excluded neutral value of 1. In total, 14 trials with 178,398 patients were included. No significant interaction was observed between co-prescribed drugs or between these medications and type 2 diabetes/hypertension status. Our meta-analysis is the first one to evaluate drug-drug and drug-hypertension/type 2 diabetes status interactions in terms of cardiovascular risks: we did not observe any significant interaction. This indirectly reinforces the rationale of using several contrasted mechanisms to address cardiovascular prevention; and allows the combination effect prediction by a simple multiplication of their odds ratios. The limited availability of data reported or obtained from authors is a strong argument in favor of data sharing

    Influence of the AlN interlayer thickness on the photovoltaic properties of In-rich AlInN on Si heterojunctions deposited by RF sputtering

    Get PDF
    We report the influence of the AlN interlayer thickness (0-15 nm) on the photovoltaic properties of Al0.37In0.63N on Si heterojunction solar cells deposited by radio frequency sputtering. The poor junction band alignment and the presence of a 2-3 nm thick amorphous layer at the interface mitigates the response in devices fabricated by direct deposition of n-AlInN on p-Si(111). Adding a 4-nm-thick AlN buffer layer improves the AlInN crystalline quality and the interface alignment leading to devices with a conversion efficiency of 1.5% under 1-sun AM1.5G illumination. For thicker buffers the performance lessens due to inefficient tunnel transport through the AlN. These results demonstrate the feasibility of using In-rich AlInN alloys deposited by radio frequency sputtering as novel electron-selective contacts to Si-heterojunction solar cells

    Polarization sensitive silicon photodiodes using nanostructured metallic grids

    Get PDF
    In this paper, we present the design, fabrication, and characterization of wire grid polarizers. These polarizers show high extinction ratios and high transmission with structure dimensions that are compatible with current complementary metal-oxide-semiconductor (CMOS) technology. To design these wire grids, we first analyze the transmission properties of single apertures. From the understanding of a single aperture, we apply a modal expansion method to model wire grids. The most promising grids are fabricated on both a glass substrate and CMOS photodiode. An extinction ratio higher than 200 is measured
    corecore