3,065 research outputs found

    The effect of spin fluctuations on the electronic structure in iron based superconductors

    Full text link
    Magnetic inelastic neutron scattering (INS) studies of iron-based superconductors reveal a strongly temperature-dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) allow to study the fingerprints of fluctuation modes via their interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling between spin fluctuations and electronic excitations for the superconducting mechanism.Comment: 22 pages, 22 figure

    Long-term potentiation through calcium-mediated N-Cadherin interaction is tightly controlled by the three-dimensional architecture of the synapse

    Get PDF
    Poster presentation: Twenty Second Annual Computational Neuroscience Meeting: CNS*2013. Paris, France. 13-18 July 2013. The synaptic cleft is an extracellular domain that is capable of relaying a presynaptically received electrical signal by diffusive neurotransmitters to the postsynaptic membrane. The cleft is trans-synaptically bridged by ring-like shaped clusters of pre- and postsynaptically localized calcium-dependent adhesion proteins of the N-Cadherin type and is possibly the smallest intercircuit in nervous systems [1]. The strength of association between the pre- and postsynaptic membranes can account for synaptic plasticity such as long-term potentiation [2]. Through neuronal activity the intra- and extracellular calcium levels are modulated through calcium exchangers embedded in the pre- and postsynaptic membrane. Variations of the concentration of cleft calcium induces changes in the N-Cadherin-zipper, that in synaptic resting states is rigid and tightly connects the pre- and postsynaptic domain. During synaptic activity calcium concentrations are hypothesized to drop below critical thresholds which leads to loosening of the N-Cadherin connections and subsequently "unzips" the Cadherin-mediated connection. These processes may result in changes in synaptic strength [2]. In order to investigate the calcium-mediated N-Cadherin dynamics at the synaptic cleft, we developed a three-dimensional model including the cleft morphology and all prominent calcium exchangers and corresponding density distributions [3-6]. The necessity for a fully three-dimensional model becomes apparent, when investigating the effects of the spatial architecture of the synapse [7], [8]. Our data show, that the localization of calcium channels with respect to the N-Cadherin ring has substantial effects on the time-scales on which the Cadherin-zipper switches between states, ranging from seconds to minutes. This will have significant effects on synaptic signaling. Furthermore we see, that high-frequency action potential firing can only be relayed to the Calcium/N-Cadherin-system at a synapse under precise spatial synaptic reorganization

    Interstitial compounds as fuel cell catalysts - Their preparative techniques and electrochemical testing

    Get PDF
    Preparation and electrochemical testing methods for fuel cell catalysts using interstitial compound

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Oct. 1 - Dec. 31, 1966

    Get PDF
    Interstitial compounds of transition elements prepared for improving oxygen electrode in alkaline hydrox fuel cel

    Caracterización y evaluación agronómica de germoplasma de nuevas leguminosas forrajeras tropicales

    Get PDF

    Signature of odd-frequency pairing correlations induced by a magnetic interface

    Get PDF
    We investigate the mutual proximity effect in a normal metal contacted to a superconductor through a magnetic interface. Analytical and self-consistent numerical results are presented, and we consider both the diffusive and ballistic regimes. We focus on the density of states in both the normal and superconducting region, and find that the presence of spin-dependent phase-shifts occurring at the interface qualitatively modifies the density of states. In particular, we find that the proximity-induced pairing amplitudes in the normal metal region undergo a conversion at the Fermi level from pure even-frequency to odd-frequency. Above a critical value of the interface spin-polarization (or, equivalently, for fixed interface spin-polarization, above a critical interface resistance), only odd frequency correlations remain. This is accompanied by the replacement of the familiar proximity minigap or pseudogap in the normal layer by an enhancement of the density of states above its normal state value for energies near the chemical potential. The robustness of this effect towards inelastic scattering, impurity scattering, and the depletion of the superconducting order parameter close to the interface is investigated. We also study the inverse proximity effect in the diffusive limit. We find that the above-mentioned conversion persists also for thin superconducting layers comparable in size to the superconducting coherence length ξS\xi_\text{S}, as long as the inverse proximity effect is relatively weak. Concomitantly, we find a shift in the critical interface resistance where the pairing conversion occurs. Our findings suggest a robust and simple method for producing purely odd-frequency superconducting correlations, that can be tested experimentally.Comment: 14 pages, 12 figures. Submitted to Physical Review. Chosen as Editors' Suggestio

    Dispersion-Theoretical Analysis of the Nucleon Electromagnetic Formfactors

    Full text link
    Dispersion relations allow for a coherent description of the nucleon electromagnetic form factors measured over a large range of momentum transfer, Q2035Q^2 \simeq 0 \ldots 35 GeV2^2. Including constraints from unitarity and perturbative QCD, we present a novel parametrisation of the absorptive parts of the various isoscalar and isovector nucleon form factors. Using the current world data, we obtain results for the electromagnetic form factors, nucleon radii and meson couplings. We stress the importance of measurements at large momentum transfer to test the predictions of perturbative QCD.Comment: 33 pp, RevTEX or plain LaTeX, 7 figures (in ffig.uu

    ppppωpp\to pp\omega reaction near threshold

    Full text link
    We analyze the total cross section data for ppppωpp \to pp\omega near threshold measured recently at SATURNE. Using an effective range approximation for the on-shell pppp S-wave final state interaction we extract from these data the modulus Ω=0.53|\Omega| = 0.53 fm4^4 of the threshold transition amplitude Ω\Omega. We present a calculation of various (tree-level) meson exchange diagrams contributing to Ω\Omega. It is essential that ω\omega-emission from the anomalous ωρπ\omega\rho\pi-vertex interferes destructively with ω\omega-emission from the proton lines. The contribution of scalar σ\sigma-meson exchange to Ω\Omega turns out to be negligibly small. Without introducing off-shell meson-nucleon form factors the experimental value Ω=0.53|\Omega|=0.53 fm4^4 can be reproduced with an ωN\omega N-coupling constant of gωN=10.7g_{\omega N}=10.7. The results of the present approach agree qualitatively with the J\"ulich model. We also perform a combined analysis of the reactions ppppπ0,pnπ+,ppη,ppωpp\to pp\pi^0, pn\pi^+, pp\eta, pp\omega and pnpnηpn\to pn\eta near threshold.Comment: Latex-file 6 pages, 2 Figure

    Nueva tecnologia de pasturas para la Amazonia

    Get PDF

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Apr. 1 - Jun. 30, 1967

    Get PDF
    Preparation of institial compounds of transition metals for hydrogen oxygen fuel cell cathode
    corecore