186 research outputs found
Violation of the transit-time limit toward generation of ultrashort electron bunches with controlled velocity chirp
Various methods to generate ultrashort electron bunches for the ultrafast science evolved from the simple configuration of two-plate vacuum diodes to advanced technologies such as nanotips or photocathodes excited by femtosecond lasers. In a diode either in vacuum or of solid-state, the transit-time limit originating from finite electron mobility has caused spatiotemporal bunch-collapse in ultrafast regime. Here, we show for the first time that abrupt exclusion of transit-phase is a more fundamental origin of the bunch-collapse than the transit-time limit. We found that by significantly extending the cathode-anode gap distance, thereby violating the transit-time limit, the conventional transit-time-related upper frequency barrier in diodes can be removed. Furthermore, we reveal how to control the velocity chirp of bunches leading to ballistic bunch-compression. Demonstration of 0.707 THz-, 46.4 femtosecond-bunches from a 50 mu m-wide diode in three-dimensional particle-in-cell simulations shows a way toward simple and compact sources of ultrafast electron bunches for diverse ultrafast sciences.ope
A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities
The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation
Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?
BackgroundLeptospirosis is a zoonotic disease infecting a broad range of mammalian hosts, and is re-emerging globally. California sea lions (Zalophus californianus) have experienced recurrent outbreaks of leptospirosis since 1970, but it is unknown whether the pathogen persists in the sea lion population or is introduced repeatedly from external reservoirs.MethodsWe analyzed serum samples collected over an 11-year period from 1344 California sea lions that stranded alive on the California coast, using the microscopic agglutination test (MAT) for antibodies to Leptospira interrogans serovar Pomona. We evaluated seroprevalence among yearlings as a measure of incidence in the population, and characterized antibody persistence times based on temporal changes in the distribution of titer scores. We conducted multinomial logistic regression to determine individual risk factors for seropositivity with high and low titers.ResultsThe serosurvey revealed cyclical patterns in seroprevalence to L. interrogans serovar Pomona, with 4-5 year periodicity and peak seroprevalence above 50%. Seroprevalence in yearling sea lions was an accurate index of exposure among all age classses, and indicated on-going exposure to leptospires in non-outbreak years. Analysis of titer decay rates showed that some individuals probably maintain high titers for more than a year following exposure.ConclusionThis study presents results of an unprecedented long-term serosurveillance program in marine mammals. Our results suggest that leptospirosis is endemic in California sea lions, but also causes periodic epidemics of acute disease. The findings call into question the classical dichotomy between maintenance hosts of leptospirosis, which experience chronic but largely asymptomatic infections, and accidental hosts, which suffer acute illness or death as a result of disease spillover from reservoir species
Non-adenine based purines accelerate wound healing
Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing. Full-thickness, excisional wound healing in healthy BALB/c mice was significantly accelerated by daily topical application of NABPs such as guanosine (50% closure by days 2.5′.8). Co-treatment of wounds with guanosine plus anti-NGF reversed the guanosine-promoted acceleration of wound healing, indicating that this effect of guanosine is mediated, at least in part, by NGF. Selective inhibitors of the NGF-inducible serine/threonine protein kinase (protein kinase N), such as 6-methylmercaptopurine riboside abolished the acceleration of wound healing caused by guanosine, confirming that activation of this enzyme is required for this effect of guanosine. Treatment of genetically diabetic BKS.Cg-m+/+lepr db mice, which display impaired wound healing, with guanosine led to accelerated healing of skin wounds (25% closure by days 2.8′.0). These results provide further confirmation that the NABP-mediated acceleration of cutaneous wound healing is mediated via an NGF-dependent mechanism. Thus, NABPs may offer an alternative and viable approach for the treatment of wounds in a clinical setting
Strengthening field-based training in low and middle-income countries to build public health capacity: Lessons from Australia's Master of Applied Epidemiology program
BACKGROUND:
The International Health Regulations (2005) and the emergence and global spread of infectious diseases have triggered a re-assessment of how rich countries should support capacity development for communicable disease control in low and medium income countries (LMIC). In LMIC, three types of public health training have been tried: the university-based model; streamed training for specialised workers; and field-based programs. The first has low rates of production and teaching may not always be based on the needs and priorities of the host country. The second model is efficient, but does not accord the workers sufficient status to enable them to impact on policy. The third has the most potential as a capacity development measure for LMIC, but in practice faces challenges which may limit its ability to promote capacity development.
DISCUSSION:
We describe Australia's first Master of Applied Epidemiology (MAE) model (established in 1991), which uses field-based training to strengthen the control of communicable diseases. A central attribute of this model is the way it partners and complements health department initiatives to enhance workforce skills, health system performance and the evidence-base for policies, programs and practice.
SUMMARY:
The MAE experience throws light on ways Australia could collaborate in regional capacity development initiatives. Key needs are a shared vision for a regional approach to integrate training with initiatives that strengthen service and research, and the pooling of human, financial and technical resources. We focus on communicable diseases, but our findings and recommendations are generalisable to other areas of public health
Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa
Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic
radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of
the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity
hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an
excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa.
Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the
Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling
analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from
north to south to form two geographically isolated groups. The northern group diverged into a clade north of the
Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The
latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation
and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations
seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade
occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the
clades of the northern group but were similar among clades of the southern group.
Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis
of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic
uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution
of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the
Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A
and Pv-
Imaging and Modeling Data from the Hydrogen Epoch of Reionization Array
We analyze data from the Hydrogen Epoch of Reionization Array. This is the
third in a series of papers on the closure phase delay-spectrum technique
designed to detect the HI 21cm emission from cosmic reionization. We present
the details of the data and models employed in the power spectral analysis, and
discuss limitations to the process. We compare images and visibility spectra
made with HERA data, to parallel quantities generated from sky models based on
the GLEAM survey, incorporating the HERA telescope model. We find reasonable
agreement between images made from HERA data, with those generated from the
models, down to the confusion level. For the visibility spectra, there is broad
agreement between model and data across the full band of MHz. However,
models with only GLEAM sources do not reproduce a roughly sinusoidal spectral
structure at the tens of percent level seen in the observed visibility spectra
on scales MHz on 29 m baselines. We find that this structure is
likely due to diffuse Galactic emission, predominantly the Galactic plane,
filling the far sidelobes of the antenna primary beam. We show that our current
knowledge of the frequency dependence of the diffuse sky radio emission, and
the primary beam at large zenith angles, is inadequate to provide an accurate
reproduction of the diffuse structure in the models. We discuss implications
due to this missing structure in the models, including calibration, and in the
search for the HI 21cm signal, as well as possible mitigation techniques
Understanding the HERA Phase i receiver system with simulations and its impact on the detectability of the EoR delay power spectrum
The detection of the Epoch of Reionization (EoR) delay power spectrum using a
"foreground avoidance method" highly depends on the instrument chromaticity.
The systematic effects induced by the radio-telescope spread the foreground
signal in the delay domain, which contaminates the EoR window theoretically
observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this
paper combines detailed electromagnetic and electrical simulations in order to
model the chromatic effects of the instrument, and quantify its frequency and
time responses. In particular, the effects of the analogue receiver,
transmission cables, and mutual coupling are included. These simulations are
able to accurately predict the intensity of the reflections occurring in the
150-m cable which links the antenna to the back-end. They also show that
electromagnetic waves can propagate from one dish to another one through large
sections of the array due to mutual coupling. The simulated system time
response is attenuated by a factor after a characteristic delay which
depends on the size of the array and on the antenna position. Ultimately, the
system response is attenuated by a factor after 1400 ns because of the
reflections in the cable, which corresponds to characterizable
-modes above 0.7 at 150 MHz. Thus, this new
study shows that the detection of the EoR signal with HERA Phase I will be more
challenging than expected. On the other hand, it improves our understanding of
the telescope, which is essential to mitigate the instrument chromaticity
Recommended from our members
Detection of cosmic structures using the bispectrum phase. II. First results from application to cosmic reionization using the Hydrogen Epoch of Reionization Array
Characterizing the epoch of reionization (EoR) at via the
redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern
astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telescopes. The primary challenge to detecting this signal is the overwhelmingly bright foreground emission at these frequencies, placing stringent requirements on the knowledge of the instruments and inaccuracies in analyses. Results from these experiments have largely been limited not by thermal sensitivity but by systematics, particularly caused by the inability to calibrate the instrument to high accuracy. The interferometric bispectrum phase is immune to antenna-based calibration and errors therein, and presents an independent alternative to detect the EoR HI fluctuations while largely avoiding calibration systematics. Here, we provide a demonstration of this technique on a subset of data from the Hydrogen Epoch of Reionization Array (HERA) to place approximate constraints on the IGM brightness temperature. From this limited data, at we infer "" upper limits on the IGM brightness temperature to be "pseudo" mK at Mpc (data-limited) and
"pseudo" mK at
Mpc (noise-limited). The "pseudo" units denote only an approximate and not an exact correspondence to the actual distance scales and brightness temperatures. By propagating models in parallel to the data analysis, we confirm that the dynamic range required to separate the cosmic HI signal from the foregrounds is similar to that in standard approaches, and the power spectrum of the bispectrum phase is still data-limited (at dynamic range) indicating scope for further improvement in sensitivity as the array build-out continues
- …
