326 research outputs found

    Isomerization dynamics of a buckled nanobeam

    Full text link
    We analyze the dynamics of a model of a nanobeam under compression. The model is a two mode truncation of the Euler-Bernoulli beam equation subject to compressive stress. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to silicon. The two mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerisation reactions in chemistry. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerisation reactions. When the second mode is stable the potential energy surface has an index one saddle and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to construct a phase space dividing surface between the two "isomers" (buckled states). The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles in a unified fashion. We have computed reactive fluxes, mean gap times and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more `pulses' of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay, indicating that, for the 2-mode model in the physical regime considered, a rate constant for isomerization does not exist.Comment: 42 pages, 6 figure

    Brane-world Cosmologies with non-local bulk effects

    Full text link
    It is very common to ignore the non-local bulk effects in the study of brane-world cosmologies using the brane-world approach. However, we shall illustrate through the use of three different scenarios, that the non-local bulk-effect Pμν{\cal P}_{\mu\nu} does indeed have significant impact on both the initial and future behaviour of brane-world cosmologies.Comment: 17 pages, no figures, iopart.cls, submitted to CQ

    Non stationary Einstein-Maxwell fields interacting with a superconducting cosmic string

    Full text link
    Non stationary cylindrically symmetric exact solutions of the Einstein-Maxwell equations are derived as single soliton perturbations of a Levi-Civita metric, by an application of Alekseev inverse scattering method. We show that the metric derived by L. Witten, interpreted as describing the electrogravitational field of a straight, stationary, conducting wire may be recovered in the limit of a `wide' soliton. This leads to the possibility of interpreting the solitonic solutions as representing a non stationary electrogravitational field exterior to, and interacting with, a thin, straight, superconducting cosmic string. We give a detailed discussion of the restrictions that arise when appropiate energy and regularity conditions are imposed on the matter and fields comprising the string, considered as `source', the most important being that this `source' must necessarily have a non- vanishing minimum radius. We show that as a consequence, it is not possible, except in the stationary case, to assign uniquely a current to the source from a knowledge of the electrogravitational fields outside the source. A discussion of the asymptotic properties of the metrics, the physical meaning of their curvature singularities, as well as that of some of the metric parameters, is also included.Comment: 14 pages, no figures (RevTex

    Jurisdictional, socioeconomic and gender inequalities in child health and development: analysis of a national census of 5-year-olds in Australia

    Get PDF
    OBJECTIVES: Early child development may have important consequences for inequalities in health and well-being. This paper explores population level patterns of child development across Australian jurisdictions, considering socioeconomic and demographic characteristics. DESIGN: Census of child development across Australia. SETTING AND PARTICIPANTS: Teachers complete a developmental checklist, the Australian Early Development Index (AEDI), for all children in their first year of full-time schooling. Between May and July 2009, the AEDI was collected by 14 628 teachers in primary schools (government and non-government) across Australia, providing information on 261 147 children (approximately 97.5% of the estimated 5-year-old population). OUTCOME MEASURES: Level of developmental vulnerability in Australian children for five developmental domains: physical well-being, social competence, emotional maturity, language and cognitive skills and communication skills and general knowledge. RESULTS: The results show demographic and socioeconomic inequalities in child development as well as within and between jurisdiction inequalities. The magnitude of the overall level of inequality in child development and the impact of covariates varies considerably both between and within jurisdiction by sex. For example, the difference in overall developmental vulnerability between the bestperforming and worst-performing jurisdiction is 12.5% for males and 7.1% for females. Levels of absolute social inequality within jurisdictions range from 8.2% for females to 12.7% for males. CONCLUSIONS: The different mix of universal and targeted services provided within jurisdictions from pregnancy to age 5 may contribute to inequality across the country. These results illustrate the potential utility of a developmental census to shed light on the impact of differences in universal and targeted services to support child development by school entry.Sally A. Brinkman, Angela Gialamas, Azizur Rahman, Murthy N. Mittinty, Tess A. Gregory, Sven Silburn, Sharon Goldfeld, Stephen R. Zubrick, Vaughan Carr, Magdalena Janus, Clyde Hertzman and John W. Lync

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    Black Hole Evaporation and Compact Extra Dimensions

    Get PDF
    We study the evaporation of black holes in space-times with extra dimensions of size L. We first obtain a description which interpolates between the expected behaviors of very large and very small black holes and then show that the luminosity is greatly damped when the horizon shrinks towards L from a larger value. Analogously, black holes born with an initial size smaller than L are almost stable. This effect is due to the dependence of both the Hawking temperature and the grey-body factor of a black hole on the dimensionality of space. Although the picture of what happens when the horizon becomes of size L is still incomplete, we argue that there occurs a (first order) phase transition, possibly signaled by an outburst of energy which leaves a quasi-stable remnant.Comment: RevTeX, 13 pages, 6 figures include
    corecore